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Abstract

Controlled experiments enable researchers to empirically confirm causal relationships be-
tween a cause and its effect. In the field of Human-Computer Interaction, controlled experi-
ments are frequently utilized to validate new artifacts and interaction techniques by com-
paring them to existing benchmarks. Throughout the process of designing experiments,
researchers must make critical decisions that determine the success of the study, such as
determining whether the findings indicate improvement or not. These decisions involve
uncertainties in estimating parameters and weighing trade-offs.

This thesis explores ways to support researchers during the experimental design process.
The three main contributions of this thesis include (1) Touchstone2—a web application that
allows researchers to design and compare experimental designs and their trade-offs, which
was evaluated in two workshops; (2) Argus—a web application that facilitates sample size
planning; and (3) SPEED—a protocol for flexible sample size planning, supported by an ap-
plication called SPEEDX. The work concludes by discussing the limitations of the research
and highlighting potential opportunities for future exploration.
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Chapter 1

Introduction

“If the design of an experiment is faulty,
any method of interpretation which makes it out to be decisive
must be faulty too.”

—Romnald A. Fisher

Controlled experiments are used to establish cause-effect relation-
ships and validate hypotheses in research. An illustrative example
of this is the story recounted by Salsburg [2001] in his book The Lady
Tasting Tea. Muriel Bristol claimed to be able to distinguish whether
milk or tea was added first to a cup, and Ronald A. Fisher proposed a
plan to empirically test her claim. Fisher’s plan introduced important
concepts such as the null hypothesis, randomization of conditions,
statistical power, and sample size planning, all of which are crucial
considerations in experimental decision-making.

Inspired by this event, Fisher described the process of designing and
analyzing controlled experiments in his book The Design of Experiments
[Fisher, 1937], which laid the groundwork for modern statistical meth-
ods. Since then, further developments and discussions within the
scientific community have led to the establishment of guidelines and
processes for researchers, including the reporting of analysis results.
However, the core principle articulated by Fisher still holds true: if the
experimental design is flawed, the credibility of the analysis results is
called into question. Therefore, it is vital for researchers to meticu-
lously design experiments and conduct thorough analyses to provide
robust evidence either supporting or refuting their hypotheses.



1 Introduction

The significance of careful experimental design is particularly evident
in fields like Medicine. For instance, Polack et al. [2020] were en-
trusted with the task of assessing the safety and efficacy of the COVID-
19 vaccine BNT162b2 (BioNTech-Pfizer vaccine). A total of 43,448
participants were recruited, receiving either the vaccine or a placebo.
Given the profound impact of the pandemic on our lives over the past
two years, it is of utmost importance to have reliable and trustworthy
results from such studies.

Various scientific fields, including Psychology, Cognitive Science,
Neuroscience, and Computer Science, derive significant benefits from
employing sound experimental practice. These practices extend be-
yond Medicine and encompass domains involving humans, animals,
or bacteria. Within Computer Science, a subfield called Human-—
Computer Interaction (HCI) frequently utilizes controlled experi-
ments to assess the effectiveness of novel interaction techniques, al-
gorithms, or systems. The focus of the thesis is specifically directed
towards researchers in HCI and closely related disciplines, such as
information visualization. HCI serves as an interdisciplinary field,
situated at the intersection of numerous domains, including Psychol-
ogy, Cognitive Science, Statistics, Design, and more. Consequently,
methodologies and practices are often shared and adapted from these
various fields, resulting in a diverse range of qualitative and quanti-
tative methods. While the primary audience for this work consists of
HCI researchers, it holds potential relevance for other scientific fields
as well. This stems from the fact that the fundamental nature of ex-
periments remains similar across different domains.

To start, I will provide an overview of the specific type of experiments
that this work concentrates on. Following that, I will summarize the
challenges associated with achieving good and accurate experimental
design. Finally, I will conclude this section by providing an overview
of the research objectives and hypotheses.

1.1 Designing the Right Experiment

HCI encompasses a multidisciplinary field where researchers employ
diverse methodologies from various disciplines to gather empirical
data and make novel contributions. Wobbrock and Kientz [2016] out-
lined seven common types of contributions within HCI, with partic-
ular emphasis on two types crucial for this work: empirical research



1.1 Designing the Right Experiment

contributions and artifact contributions. Empirical research contribu-
tions, also known as empirical contributions, involve the gathering,
analysis, and interpretation of qualitative or quantitative data to gen-
erate knowledge. On the other hand, artifact contributions involve
the development of interactive systems, prototypes, or tools through
design activities.

In many cases, artifact contributions are accompanied by empirical
contributions to validate or compare them against existing practices.
Providing empirical evidence is considered a valuable aspect of re-
search, even though the validation or comparison may not be mean-
ingful [Greenberg and Buxton, 2008]. For example, empirical contri-
butions might focus on “the ease of system use” rather than “how
useful a system is.” Greenberg and Buxton [2008] discuss how the
potential drawbacks of such usability evaluations and emphasize the
importance of selecting an appropriate empirical method that aligns
with the research question.

As a multidisciplinary field, researchers in HCI have a wide array of
methodologies to choose from, including ethnographic observations,
technology probes, interviews, diary studies, structured observations,
quasi-experiments, and controlled experiments. Each method enables
researchers to collect different types of data, which in turn support
different types of claims. The selection of the appropriate method, in
terms of its relevance to the research question, is equally as impor-
tant as conducting the chosen method with high quality and rigor.
Choosing the right method is a crucial prerequisite for designing the
experiment correctly.

One of the methods employed in HCI research is the controlled ex-
periment. In a controlled experiment, researchers manipulate specific
factors to establish a causal relationship, while simultaneously con-
trolling or minimizing the influence of other factors. By conducting
the experiment in a controlled setting, researchers can reduce uncer-
tainty regarding the interpretation of the results. The objective of a
controlled experiment is to establish a causal relationship between a
stimulus and its effect and to generalize these findings to the broader
population from which the participants were recruited.!

1At the time of this thesis, Wendy E. Mackay, Joanna McGrenere, Chat Wachara-
manotham, and I have been involved in a project focused on publishing structured
observation as a practical methodology. As part of this project, the researcher assisted
in surveying various empirical methods for comparison and specifically helped in
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Figure 1.1: Relationships between different critical factors for experimental design. A — B
indicates that a change in A might trigger a change in B.

1.2 Designing the Experiment Right

Designing a controlled experiment involves the specification of vari-
ous parameters related to the experimental design. The resulting ex-
perimental design is then implemented to carry out the experiment. It
is important to note that a well-designed experiment has the potential
to provide strong empirical contributions, whereas a poorly-designed
experiment can undermine the validity of the entire study. To begin,
an overview of the pertinent design parameters and the process for
designing an experiment will be presented. This will be followed by a
discussion on the implications of good and bad experimental design.
Finally, the focus will shift towards addressing the research questions.

1.2.1 Designing Experiments

In order to ensure a high level of quality and rigor in experiment de-
sign, researchers must carefully consider several design parameters,
which involve making trade-off comparisons between different exper-
imental designs. The first step is to operationalize the hypothesis by
identifying one or multiple independent variables® (IV). Addition-
ally, researchers need to determine the dependent variables, which
represent the data collected during the experimental session. The next

comparing them with controlled experiments. However, it is important to note that
this ongoing work is excluded from the scope of the present thesis.
2 Also known as factors or stimulus.
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Figure 1.2: Two independent variables—Menu Type and Device—yield six conditions to
compare with participants.

design considerations are blocking and counterbalancing. Blocking
refers to how each combination of IVs is distributed among the par-
ticipants, while counterbalancing involves systematically varying the
order in which the different conditions or treatments are presented to
minimize potential biases. In certain experiments, participants may be
assigned multiple replications of the same combination of IVs. This
repetition allows for aggregating measurements across replications to
reduce noise in the data. Finally, researchers need to determine the
number of participants—also referred to as sample size—to recruit
for the experiment, which can be informed by a statistical power anal-
ysis.

Researchers often face challenges in balancing trade-offs between de-
sign alternatives due to the intricate relationships among experimen-
tal design parameters. Figure 1.1 illustrates the interdependencies be-
tween the aforementioned parameters. Modifying one parameter can
have ripple effects on other parameters, leading to a complex web
of relationships. These dependencies are non-trivial and often con-
cealed, as predicting the impact of a parameter change is challenging
due to the cyclic nature of these relationships. To better comprehend
the complexity involved, let’s consider an example of an experimental
design.

Let’s consider an example of experimental design to compare two
Menu Types (MT): Circular and Drop-down, across three different De-
vices (D): Desktop, Tablet, and Phone (Figure 1.2). This setup gives us
two IVs: Menu Type with two conditions (MT[2]) and Device with
three conditions (D[3]). In total, there are 2 x 3 = 6 pairs of conditions
that we want to compare. Each participant should receive all six con-
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Initial Design Iteration #1 Alternative #1 Alternative #2
IVs D[3] x MT[2] D[3] x MT([2] D[2] x MT([2] D[3] x MT[2]
Blocking none D (MT) D (MT) D (MT)
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Replications 15 15 1 15 1 10 1
Duration 36 min /1 36 min /I 24 min 24 min
#Participants™ 90 /N 6 2 6

* indicates the multiple number of participants for a fully counterbalanced design.

Figure 1.3: Experimental design process from an initial design to two plausible alternatives.
Yellow denotes the parameter that is changed by the researcher. Green denotes update pa-
rameters based on the researcher’s change.

ditions to reduce the variation between participants. To lower noise in
the data further, we set the replications to 15 so that each participant
has to repeat each condition 15 times. To mitigate order effects, we will
use Latin square counterbalancing. We estimate® the duration for each
session per participant to be around 36 minutes. Latin square counter-
balancing exposes each participant to the six conditions in a different
order, so that each condition is seen only once and at a unique po-
sition. Using the Latin square counterbalancing and the parameters
mentioned above, we calculate the required number of participants as
3 x 2 x 15 = 90 participants.

There are two problems with the initial design (Figure 1.3) regard-
ing the duration and the number of participants. One factor that
constrains the number of participants is the budget researchers have
available for the experiment. Let’s assume the constraint is 30 partic-
ipants. The initial design requires at least 90 participants, which ex-

*The following timings are used for the estimation: average duration per trial 20
seconds, delay after each trial 4 seconds, and delay after each block 1 second.
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ceeds the available budget. We can address the problem of the number
of participants as follows:

By blocking the conditions by Device, participants will complete
all conditions for one device consecutively (Figure 1.3 Iteration #1).
Therefore, a participant would complete all 30 Menu Type conditions
(MTI[2] x 15 replications) with the Desktop before moving on to the
Tablet and finally the Phone. The design is now suitable for a multiple
of 6 participants. With our budget, we could recruit either 24 or 30
participants.

The duration of 36 minutes is quite long for such an experiment. This
might lead to reduced participant performance in later trials due to
fatigue. Ideally, the duration should be shorter, preferably less than
30 minutes, with 25 minutes being even better to minimize fatigue
effects. We can address the duration problem by considering either of
the following two possibilities:

1. We can drop the Tablet condition from the IV Menu Type (Fig-
ure 1.3 Alternative #1). By removing one condition, the dura-
tion of the experiment would be reduced to approximately 24
minutes. However, it is important to note that this alternative
would also eliminate one of the desired conditions from the ex-
periment.

2. Another possibility is to reduce the number of replications to 10
(Figure 1.3 Alternative #2). This would also result in a dura-
tion of around 24 minutes.However, it is worth considering that
reducing the number of replications increases the likelihood of
noisier data, which can potentially compromise the statistical re-
sults.

Now, the researchers need to decide between the two alternatives by
evaluating their respective trade-offs. Conducting a pilot study could
provide additional insights and help determine the feasibility of the
reduced number of replications. For example, the researchers could
opt to run a small study comparing only the Tablet and Phone con-
ditions to assess if there are any significant differences between them.
Alternatively, they could collect data from a few participants during a
pilot study to evaluate the level of noise present in the data.

This example provides a brief glimpse into the process and decision-
making that researchers encounter when designing experiments. In
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reality, experiments can be much more complex, involving multiple
experimental conditions and stricter constraints on factors such as the
number of participants, replications, and power analysis. Exploring
the parameter space and carefully considering these design aspects is
a time-consuming yet crucial task. Designing a good experiment is of
utmost importance as it lays the foundation for obtaining reliable and
valid results.

1.2.2 Consequences of Poorly Designed Experiments

A poorly designed experiment can undermine the entire study due to
various factors such as reduced statistical power, challenges in repli-
cation, and the production of inaccurate or unreliable results.

Statistical power refers to the probability of detecting an existing effect
in the population, given a specific sample size. Ignoring the concept of
statistical power in experimental design can compromise the validity
of the study, as it may lead to insufficient sample sizes or inadequate
data collection that hinder the detection of effects. It is crucial to rec-
ognize that the absence of a statistically significant effect in the results
does not necessarily mean the effect does not exist; it could be a result
of low statistical power, leading to false negatives where true effects
are missed. Therefore, ensuring an appropriate sample size and sound
experimental design is important to minimize false negatives and in-
crease the likelihood of detecting significant effects.

A crucial aspect of experimental design is the management of extra-
neous variables, which are factors that can potentially influence the
relationship between the independent and dependent variables. Ex-
amples of such factors include incorrect counterbalancing, which can
result in order effects that render the collected data unreliable, or in-
adequate blocking, which may lead to unintended order or learning
effects. Failure to properly control for these extraneous variables can
confound the collected data, introducing inaccuracies and reducing
the reliability of the results.

Errors in experimental design can encompass various mistakes, such
as incorrect counterbalancing, which can introduce order effects that
render the collected data invalid. Additionally, incorrect blocking can
result in unwanted order or learning effects that impact the reliability
of the results. Moreover, an inadequate number of participants can
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lead to an experiment with low statistical power, reducing the ability
to detect meaningful effects.

A replication study aims to recreate an experimental setup as closely
as possible, including aspects such as experimental design and partic-
ipant recruitment. In some cases, slight variations may be introduced
to examine if similar results can be obtained under slightly different
conditions. Replication is a vital component of scientific research, but
it can be hindered by poor experimental design. Difficulties in repli-
cation arise when the original study lacks thorough documentation,
insufficiently describes the methodology, or fails to adequately con-
trol for external factors. These deficiencies in experimental design
and transparency in reporting have contributed to a replication cri-
sis in fields such as Psychology [Maxwell et al., 2015], Neuroscience
[Marek et al., 2022], and Medicine [loannidis, 2005]. In many cases,
researchers have struggled to reproduce the results of previously pub-
lished studies due to insufficient information about the experimental
design and analysis procedures [Goodman et al., 2016].

Ultimately, poor experimental design can have significant conse-
quences for the credibility of both the research and the researchers
involved. Flawed study design, incorrect data collection or analysis,
and a lack of proper controls can all undermine the reliability and va-
lidity of the findings. When these issues arise, trust in the research and
the researchers may be compromised. This loss of trust can hinder the
researchers’ ability to secure funding or have their work published in
reputable venues. It is therefore crucial to exercise the utmost care and
attention when planning and conducting an experiment to maintain
the integrity of the research and the researcher’s reputation.

1.2.3 Research Questions

In summary, designing a controlled experiment poses challenges due
to the interdependencies between different parameters and the criti-
cality of implementing correct and rigorous experimental design. Ne-
glecting these considerations can lead to negative consequences for
the research outcomes and the researchers involved. This leads to the
first research question:

RESEARCH QUESTION 1: How can researchers be supported when
designing controlled experiments?
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I investigate RQ1 in Chapter 2 by examining specific challenges that
researchers encounter during the experimental design process. The
goal is to develop a tool that facilitates the comparison of trade-offs
between different design alternatives.

One of the most critical parameters in experimental design is the num-
ber of participants, also known as the sample size. Insufficient sample
size can lead to inconclusive results and raise questions about the va-
lidity of the experiment. A priori power analysis allows researchers to
compute a reasonable sample size based on an effect size from previ-
ous research, pilot data, or local standards within the field. However,
the challenge lies in accurately estimating an effect size that would
result in a sensible sample size, which leads to the second research
question:

RESEARCH QUESTION 2: How can researchers be supported when
conducting a priori power analyses to inform the sample size?

I investigate RQ2 in Chapter 3 by developing an application that fa-
cilitates the exploration of contributing factors in power analysis and
enables researchers to validate the insights they can gain from it.

Fisher [1937] and Neyman and Pearson [1928] established fundamen-
tal rules that form the basis of modern statistics. One of these rules
states that the sample size should be predetermined before data col-
lection and should not be analyzed until after the entire sample size is
collected. However, this rule posed challenges in the context of med-
ical trials, where large sample sizes, potential health risks for partici-
pants, and long durations made it impractical. As a result, researchers
have developed methods that allow for ongoing statistical analysis
while data is being collected [Armitage et al., 1969, Pocock, 1977,
Bauer, 1989]. These methods have been adapted to various fields, in-
cluding [Lakens, 2014b] and Neuroscience [Feder et al., 1991]. In HCI
research, which often deals with novel technologies and interaction
techniques, determining an appropriate sample size based on prior
research remains a challenge. This leads to the third and final research
question:

RESEARCH QUESTION 3: How can researchers in HCI utilize a
more flexible approach to plan sample sizes for controlled experi-
ments?
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Iinvestigate RQ3 in Chapter 4 by providing the theoretical context for
more flexible sample size decisions in HCI research. Additionally, I
develop R templates and a web application that enable researchers to
implement and conduct these flexible sample size calculations.

These three research questions and projects are connected by the
theme of sample size planning with counterbalancing design. The
first project, Touchstone2, focuses on the counterbalancing design and
includes a simple prototype for determining a reasonable sample size.
This prototype requires the user to specify a numeric value for the ex-
pected strength of the effect to be investigated, known as the effect
size. However, we found that this specification is challenging for the
user, even with statistical training.

The second project, Argus, addresses this issue by breaking down the
effect size into smaller components. These smaller components are
easier for the user to estimate based on prior work or knowledge about
the expected data. However, in some cases, there may still be uncer-
tainty in estimating these smaller components, which can result in a
sample size that is either too large or too small.

The last project, SPEED, combines the learnings from the previous two
projects and enables more flexibility in the sample size decisions. With
SPEED, users can conduct statistical analyses during the data collec-
tion and have the option to stop the experiment early if certain criteria
are met. All three projects follow a natural progression, and there is an
opportunity to incorporate the lessons learned from SPEED back into
Touchstone?.

These three projects have either been published or are currently un-
dergoing revision for publication. Each chapter includes a publication
statement that acknowledges my involvement and contribution to the
respective project.

In conclusion, controlled experiments play a crucial role in providing
empirical validation for artifact contributions in research. However,
it is essential to ensure that conducting an experiment aligns with the
research question at hand. When experiments are deemed appropri-
ate, it is the responsibility of researchers to adhere to best practices
in terms of rigor, transparency, and reproducibility to ensure the pro-
duction of high-quality results. The objective of this work is to sup-
port HCI researchers in this process by identifying and addressing the
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challenges they face and developing tailored artifacts that meet their
specific needs.
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Chapter 2

Touchstone2: An Interactive
Environment for

Exploring Trade-offs in HCI
Experiment Design

Touchstone2 offers a direct-manipulation interface for generating and
examining trade-offs in experiment designs. Based on interviews with
experienced researchers, we developed an interactive environment
for manipulating experiment design parameters, revealing patterns
in trial tables, and estimating and comparing statistical power. We
also developed TSL, a declarative language that precisely represents
experiment designs. In two studies, experienced HCI researchers suc-
cessfully used Touchstone2 to evaluate design trade-offs and calculate
how many participants are required for particular effect sizes. We dis-
cuss Touchstone2’s benefits and limitations, as well as directions for
future research.

Publications: The work in this chapter is a collaboration with Chat Wacharamanotham, Michel
Beaudouin-Lafon, and Wendy E. Mackay. The author is responsible for conducting and analyzing
the interview study, the evaluations, and the design and implementation of Touchstone2. This work
was published at CHI 2019 [Eiselmayer et al., 2019] and received a best paper award (top 1%).
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Figure 2.1: Touchstone2? experiments consist of interactive “bricks” (D that specify indepen-
dent variables, blocking, counterbalancing and timing, and generate an interactive trial table
@ and an interactive statistical power chart Q).

2.1 Introduction

Human-Computer Interaction (HCI) researchers often compare the ef-
fectiveness of interaction techniques or other independent variables
with respect to specified measures, e.g., speed and accuracy. Design-
ing such experiments is deceptively tricky: researchers must not only
control for extraneous nuisance variables, such as fatigue and learning
effects, but also weigh the costs of adding more conditions or partici-
pants versus the benefits of higher statistical power.

Unfortunately, the problem is greater than simply helping individual
researchers design experiments. The natural sciences face a “repro-
ducibility crisis” — A recent survey of over 1500 scientists indicated
that “more than 70% have tried and failed to reproduce another scien-
tist’s experiments.” [Baker, 2016]. One explanation is the number of
researcher degrees of freedom: the methodological decisions from study
design up to publication [Simmons et al., 2011], including how many
participants are recruited and assigned to which conditions [Wicherts
et al., 2016]. Cockburn et al. [2018] argue persuasively in favor of
pre-registering these decisions, in line with other scientific disciplines.
However, to make this possible, the HCI community needs a common
language for defining and sharing experiment designs. We also need
tools for exploring design trade-offs, and capturing the final design
for easy comparison with published designs.

Our goal is to help HCI researchers generate and weigh design choices
to balance the inherent trade-offs among alternative designs. We
present Touchstone2 (Figure 2.1), a software tool for creating, compar-
ing and sharing experiments that includes:
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* q visual environment to manipulate experiment designs and their
parameters;

* q graphical interface to weigh alternative designs and highlight
trial table patterns;

* an interactive visualization to assess statistical power;
* an online workspace to compare and share designs; and

* adeclarative language, TSL, to describe complex experiments with
minimal constructs and operators.

After discussing related work, we present the results of an interview
study that informed the design of Touchstone2. Next, we present the
design rationale for Touchstone2 and the TSL language, as well as the
results of two workshops with HCI researchers to assess the interface.
Finally, we discuss the benefits and limitations of Touchstone2, as well
as directions for future research.

2.2 Related Work

This paper focuses on two aspects of experiment design: counterbal-
ancing' and a priori power analysis. The research literature includes
different conventions for representing experiment designs, and pro-
vides some software packages for ensuring counterbalancing and as-
sessing power.

2.2.1 Representing Experiment Designs

Individual research disciplines use various techniques for optimizing
experiment designs. For example, industrial manufacturing uses Re-
sponse surface design [Box and Wilson, 1992] and the Taguchi method
[Nair et al., 1992] for between-subjects designs. They treat product
elements as experiment subjects and focus solely on determining the
optimal number of levels for each independent variable. In the natu-
ral sciences, Soldatova and King [2006] created a computer-readable

!Statisticians use the more general term randomization design, which includes coun-
terbalancing. The latter is more common in HCI. We use both terms interchangeably
in this paper.
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Figure 2.2: Four experiment designs representations [Cox and Reid, 2000]%.

ontology of scientific experiments (EXPO) that defines terms related
to scientific discovery: research, null and alternative hypotheses, indepen-
dent (IV) and dependent variables (DV), and results. This helped au-
tomate hypothesis generation and testing for yeast genomics experi-
ments [King et al., 2009]. However, since experiments in this domain
are restricted to simple Latin square designs, EXPO omits blocking and
counterbalancing. Papadopoulos et al. [2016] present VEEVVIE, an on-
tology that describes Information Visualization data at the trial level,
which unfortunately precludes specifying trial order.

*There are multiple ways to model the error term in a GLM. See
dwoll.de/rexrepos/posts/anovaMixed.html based on [Wollschlager, 2017].
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The statistical literature [Cox and Reid, 2000, Fisher, 1937] argues that
experiment designs serve two primary goals: 1) explaining effects and
2) explaining the assignment of treatment conditions to subjects’. To
explain effects, generalized linear models (GLM) determine the ap-
propriate statistical procedures for data analysis (Figure 2.2 (D). Cell-
mean tables 2) summarize levels of dependent variables for each con-
dition (often used in statistical reports and for power analyses).

Treatment condition assignments are often displayed as trial tables,
with one trial per line 3), but their length and complexity make them
cumbersome to manipulate. Design matrices provide two-dimensional
representations of GLM coefficients, but without order information @),
as each row in a design matrix may correspond to multiple replicated
trials. Text descriptions are also possible, but the lack of agreed-upon
formats and minimum ‘completeness’ requirements increases the like-
lihood of incomplete or ambiguous experiment descriptions, espe-
cially within the page limitations required by publishers. We argue
that comparative exploration of experiment designs requires a com-
pact, yet flexible, formal specification of how treatment conditions are
assigned to each participant.

2.2.2 Software for Specifying Counterbalancing

Counterbalancing a design is the process of assigning treatments to
experiment units, e.g., participants. Experiments using a within-
participant factor must counterbalance the treatment order to avoid
systematic errors, minimize random errors, and ensure that interac-
tion effects—if present—are captured [Cox and Reid, 2000]. Some sta-
tistical software packages, e.g., JMP DOE [SAS Institute Inc., 2016],
Design-Expert*, and the R package skpr [Morgan-Wall and Khoury,
2018] support part of this process. Experimenters must specify a GLM
in order to generate trial tables with ordered sets of treatment con-
ditions per participant. The IV levels are then optimized for maxi-
mum efficiency in large-scale, between-subjects experiments. How-
ever, most HCI experiments are small scale, with few participants
[Kay et al., 2016b], and often include within-participant factors.

The crossdes R package [Sailer, 2013] generates trial tables and tab-
ulates treatment frequencies by row, column, or concurrence, but only

3Subjects is the statistical term; we use participants for human subjects.
4jmp.com, statease.com
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for within-subject designs. Each system offers a wizard-style dialogue
for entering parameters. Some include examples, but few are directly
relevant to traditional HCI experiments and none support comparing
alternatives.

Both Touchstone [Mackay et al., 2007] and later NexP [Meng et al., 2017]
were designed explicitly for HCI experiments that assess how hu-
man participants interact with specific technologies. Both offer novice
researchers step-by-step instructions, with templates and menus to
gather the parameters needed to generate a trial table. The Touchstone
design platform leads users through a series of screens that specify inde-
pendent variables and levels, blocking, counterbalancing, and timing.
In-context help encourages users to evaluate potential negative conse-
quences of particular decisions. The Touchstone run platform presents
the resulting counterbalanced sets of trials to experiment participants.
NexP offers an alternative question-answer approach to enter experi-
ment design parameters. Both systems help users weigh the pros and
cons of various decisions, but are designed for tweaking one design
at a time, rather than systematically comparing alternatives. Neither
offers a direct manipulation interface for generating experiment de-
signs, nor an underlying declarative language for uniquely specifying
each experiment.

2.2.3 Software for a priori Power Analysis

The HCI literature typically sets alpha levels to 0.05, lowering the risk
of false alarms, i.e. Type I errors that claim an effect that does not exist.
However, HCI experiments are often small, with only 12-16 partici-
pants. While these may detect large effect sizes, e.g., Bubble cursor’s
[Grossman and Balakrishnan, 2005] 30% speed increase, they signifi-
cantly increase the probability of misses, i.e. Type II errors that do not
find a real effect (Figure 2.3).

An a priori power analysis® lets experimenters determine the number
of participants necessary to detect an effect of a specified size, given
a significance criterion. Several calculators® and R packages, such as
pwr [Champely et al., 2018], support power analysis. G*Power [Faul
et al., 2007], currently the most comprehensive such, provides a form

>Shortened to power analysis in the paper
SFor example http:/ /www.macorr.com/sample-size-calculator.htm and
http:/ /www.dssresearch.com/KnowledgeCenter/toolkitcalculators.aspx
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Figure 2.3: Type I and Type II errors, statistical power.

to enter the above parameters and calculates the minimum sample
size. The resulting power chart shows relationships among sample size,
power, and effect sizes, helping users assess the trade-offs between
the benefits of additional power (detecting smaller effect sizes) and
the cost of adding participants. No current HCI experiment design
platform offers power analysis.

We argue that existing HCI experiment design platforms should be
extended to support generating and visualizing alternative designs,
based on randomization, power analysis, and other factors. This re-
quires a common format for representing experiments, so they can be
replicated and shared within the HCI community.

2.3 Interview Study

Prior to designing the Touchstone2 interface, we investigated how ex-
perienced researchers currently design experiments: What challenges
do they face and how do they resolve them?

2.3.1 Participants

We recruited 10 researchers who had designed, run and published one
or more controlled experiments: 2 post-docs, 7 Ph.D. students and 1
graduate assistant, in Economics (1), Biology (1), Psychology (2) and
HCI (6).
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2.3.2 Procedure

We interviewed participants at work for 30-60 minutes, using the crit-
ical incident technique [Mackay, 2002]. We asked them to describe,
step-by-step, the design of their current or most recent experiment, in-
cluding any relevant tools or artifacts, e.g., spreadsheets. We probed
for associated tasks, e.g., how they counterbalanced conditions across
participants.

2.3.3 Data collection

We recorded audio (5) and hand-written notes (5). We took pictures
of whiteboards and copied participants” hand-written notes, printed
documents, scripts or spreadsheets used to create or communicate
their designs.

2.3.4 Results

Participants highlighted the following design challenges:

Time constraints (8/10): P3 works with small children with short at-
tention spans—so sessions can last at most five minutes. P9’s pointing
experiment was limited to 30 minutes to avoid fatigue.

Weighing design alternatives (6/10): P8 ran multiple pilot tests over
four months that detected subtle, confounded learning effects. She
ran a between-participants part to avoid learning effects and a within-
participants part to let them compare the techniques. This required 27
participants, which was costly to recruit and run.

Counterbalancing problems (6/10): P4 spent several days unsuccess-
fully using a spreadsheet to generate a Latin square for a complex ex-
periment. Despite the color-coding, his advisor was unable to verify
his table and ended up recreating it from scratch, using her own coun-
terbalancing method. P8 discovered a counterbalancing error at the
third level of an independent variable after running her experiment.
Fortunately, a post-hoc analysis showed no significant carryover ef-
fect. P9 created a trial table with a Python script but was not sure if it
was counterbalanced correctly.
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Representing experiment designs (7/10): P3 sketched her design on
paper and on a tablet, with figures created in PowerPoint and Word,
and P6 and P7 drew their designs on paper to get feedback. All had to
recreate these representations after the design was changed.

Power analysis to select sample size (4/10): None of the HCI re-
searchers used power analysis to choose the number of participants.
Instead, they used the “at least 12” rule of thumb for small-n statistics,
plus whatever was necessary for correct counterbalancing. Non-HCI
participants treated power analysis as a suggestion and made adjust-
ments later. For example, P1 added extra participants in case some
dropped out of his online experiments. Others preferred smaller sam-
ple sizes due to restricted access, e.g., P2’s studies of hospital employ-
ees; or the cost of samples, e.g., P10’s studies of RNA sequences. P3
recruited as many children as possible and conducted post-hoc power
analyses to demonstrate statistical power.

2.3.5 Discussion

We found that participants face numerous constraints, some pre-
dictable, e.g., P3’s limited session time; some emergent, e.g., P8’s dis-
covery of a learning effect. They struggle to weigh the costs and ben-
efits of different parameters and lack a standard way to represent and
thus communicate their experiments. They also lack reliable methods
for generating and verifying counterbalanced trial tables and assess-
ing statistical power.

2.4 Designing Touchstone2

Touchstone introduced a streamlined process for counterbalancing tri-
als [Mackay et al., 2007, Table 1], later adopted by NexP [Meng et al.,
2017, Figure 1], with different views accessible in different tabs. The
results from our interviews highlight the iterative and collaborative
nature of the process, the multiplicity of artifacts generated to com-
municate designs (Figure 2.4), and the need to support power analysis
(Figure 2.5).
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Figure 2.4: Counterbalancing is highly iterative: Multiple artifacts
(right) capture, reveal, and communicate the design.

24.1 Counterbalancing Process

Researchers generate artifacts (Figure 2.4, right) to explore or commu-
nicate experiment designs, testing each candidate against constraints,
e.g., number of participants or maximum session duration. Such con-
straints are often initially ill-defined, so researchers refine them based
on pilot tests or suggestions from colleagues, in order to fully oper-
ationalize the design. Changes in earlier steps of the process affect
later steps. For example, adding one level to an IV forces regenera-
tion of the entire trial table. Both Touchstone and NexP let users repeat
the operationalization step to automatically generate new trial tables.
However, users must essentially start over if they make changes after
importing a trial table into a spreadsheet to explore counterbalanc-
ing strategies or share with colleagues. Touchstone2 therefore supports
multiple parallel designs for easy comparison.
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Figure 2.5: Power chart: Compare several possible effect sizes.

2.4.2 Power Analysis Process

Statistical power (1 — ) is the probability of detecting a real popu-
lation effect from the participants sampled in an experiment. This is
computed from the sample size N7, probability « of Type I errors®, and
effect size’ in the real population. Studies with high statistical power
are more likely to detect smaller effect sizes, but require larger num-
bers of participants.

Determining the experiment’s sample size requires o and 1 — 3 thresh-
olds, usually .05 and .80 [Cohen, 1988, p. 56], and estimating the effect
size (Figure 2.5). The latter is difficult and may discourage users from
conducting a power analysis [Lipsey, 1990, p. 47]. Indeed, “power
analysis cannot be done without knowing the effect size in advance, but if we
already know the size of the effect, why do we need to conduct the study?”
[Murphy et al., 2014, p. 17].

To cope with this conundrum, researchers usually visualize the rela-
tionships among N, power, and possible effect sizes in a power chart
(Figure 2.5, right) to weigh the benefits of more power against the cost
of more participants. In Figure 2.5 (left), increasing the sample size

"Number of participants
8Claiming an effect when one does not exist.
“How much DVs (measures) change according to different IV levels.
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from 20 to 24 makes it easier to correctly detect a smaller effect size of
0.25 instead of 0.3.

Power analysis may be conducted either in parallel or after coun-
terbalancing, depending on whether effect sizes are known, either
from the literature or prior work. If such data is missing, researchers
must either guess or run a pilot study. Not surprisingly, few HCI re-
searchers run power analyses. Of 665 CHI 2018 papers we examined,
519 include the term “experiment”. Of these, 111 mention counter-
balancing, but only five mention power analysis for choosing sam-
ple size. Our interviews indicate that, even though some HCI re-
searchers know about power analysis, few use it, which increases the
likelihood of missing small effects. Touchstone2 facilitates power anal-
ysis, which helps researchers assess the risks of low power and make
better-informed choices.

2.5 Touchstone2

The goal of Touchstone? is to facilitate exploration of experiment de-
signs. We describe the user interface for specifying and comparing al-
ternatives according to diverse criteria, e.g., randomization strategies
(counterbalancing, blocking, replication), session length, and statisti-
cal power. Next, we describe the TSL language for specifying experi-
ment designs.

2.5.1 Touchstone2 User Interface

Each experiment consists of nested bricks that represent the overall de-
sign, blocking levels, independent variables, and their levels. Experi-
ments can be assembled from scratch or cloned from a template, e.g.,
a [2x3] design. Parameters such as variable names, counterbalanc-
ing strategy and trial duration are specified in the bricks and used to
compute the minimum number of participants for a balanced design,
account for learning effects, and estimate session length. An experi-
ment summary appears below each brick assembly, documenting the
design.

In Figure 2.6, Design (D is a [2x3] within-participants design to com-
pare menus, where TECHNIQUE has two values: POPUP and MARK-
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(EIECTEEAS of KN replications \
Ser e e

=
. participant (or sub-block)

pant (or sub-block)

Suitable for a multiple of 18 Participants

I plan to recruit participants Suitable for a multiple of 6 Participants

Order effect coverage 100% | plan to recruit participants

Order effect coverage 100 %

Figure 2.6: Two blocking strategies for a [2x3] within-participants de-
sign to compare POPUP and MARKING menus.

ING, and ITEM has three values: 5, 10, and 15. Trials are replicated
three times. Design ) is blocked by technique, using a Latin square.

Counterbalancing

Users arrange bricks in a 2D workspace to enable side-by-side com-
parisons of alternatives. For example, in Figure 2.6, Design (D) fea-
tures a Latin Square brick that contains two bricks, one for each IV.
This counterbalances all variables within the same blocking level, re-
sulting in a balanced design for multiples of 18 participants. Design
@ uses two Latin Square bricks. The brick that contains the Item IV
is nested inside the brick that contains the Technique IV. This creates
a blocked design, where trials are grouped by Technique level (Fig-
ure 2.7). As a result, the design is now balanced for multiples of only
six participants.
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Participant 1 P2 P3
# Technique ltem # T | # T
; Maring s
4 Popup 10
5 Popup 5
6 Papup 15
7 Marking 10
8 Marking 5
9 Marltk“ 15

)

10 Popup‘ 10
11

Popup 5

Figure 2.7: Trial Table Inspection with Fish-eye View

Inspecting Trial Tables

Manipulating bricks immediately generates a corresponding trial ta-
ble (Figure 2.7) that shows the distribution of experiment conditions
across participants. Trial tables are faceted by participant. The width
and height of each table correspond to the numbers of participants
and trials, respectively, to facilitate comparison.

Touchstone2 provides two tools for in-depth trial table inspection:

1. Brushing [Tweedie et al., 1996]: clicking on one or more cells
highlights those corresponding to the same condition; clicking
on one or more rows highlights those corresponding to the same
combination of conditions.

2. Fish-Eye Views to show a TABLE LENS [Rao and Card, 1994] vi-
sualization: The trial table shrinks to an overview, magnified
around the cursor for readability.

Users can easily compare among participants and among designs on
one screen, and examine their trade-offs. For example, more indepen-
dent variables will increase the study duration for each participant,
hence the height of the table will be larger. Used together, these tools
make it easy to inspect patterns of trial conditions and compare ex-
periment designs. For example, Figure 2.7 highlights each MARKING
level to show how they are grouped in consecutive trials.
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Participant1 Table 1 Table 2 Table 3
Trial order: AB CD CDAB DCBA BADC
First-order sequences:  [A"B D C B A
B C DA CB A D
AB B A D¢ Therefore, for P2,
either table 2 or 3
Jaro similarity of the first order sequence w.rt.P1: 2 0 0 arepreferred.

Figure 2.8: The Jaro similarity measure ensures maximum counterbal-
ancing coverage for each successive participant.

Ny /1/4
:q_) 0.6
s
[}
O 0.44
T At the Cohen’s f=0.167,
0.24 30 participants gives the )
A power of 0.85 k
0.0 r r T T y 1
0 6 12 18 24 30 3
Number of Participants
Design 1 (f=0.25) —@— Design 2 (f=0.167 £ 0.03)

Figure 2.9: Power analysis: With 18 participants Design 1 is likely to
find the effect. Design 2 needs 30 participants.

Touchstone2 orders trial tables so as to maximize counterbalancing cov-
erage for each successive participant, in case too few participants are
recruited or one drops out. Figure 2.8 illustrates this algorithm: Sup-
pose we pick a trial table P; for the i-th participant. The table for the
next participant, P, 1, is selected from those whose sequence of first-
order effects are least similar according to the Jaro similarity measure
(number of row-transpositions) [Jaro, 1989].
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Figure 2.10: Calculating effect size from pilot data.

Power Analysis

Touchstone? starts with a set of default parameters'” and plots a power
chart for each active experiment design in the workspace (Figure 2.9).
Each power curve is a function of the number of participants, and
thus increases monotonically. Dots on the curves denote numbers of
participants for a balanced design. The pink area corresponds to a
power less than the 0.8 criterion: the first dot above it indicates the
minimum number of participants.

To refine this estimate, users can choose among Cohen’s three conven-
tional effect sizes [Cohen, 1988, Chapter 8], directly enter a numerical
effect size, or use a calculator to enter mean values!! for each treat-
ment of the dependent variable (often from a pilot study). Users can
select the factors and interactions to include in the power calculation,
which automatically adjusts the degrees of freedom used to determine
power. By default, all factors are included without interactions (Fig-
ure 2.10).

%Cohen’s medium effect size f = 0.25, Type II error § = 0.2, Nonsphericity cor-
rection € = 1. These default parameters can also be globally customized.

""For skewed data, e.g., task completion time, users can instead input a more robust
central tendency estimate, e.g., geometric mean or median. We leave non-interval
data, e.g., Likert items, for future work.
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Figure 2.11: In the power calculation, the direction of integral calculation were optimized for

responsiveness .

The power chart is a common representation in power analysis which
is also available in G*Power. In Touchstone2’s chart, the user can com-
pare multiple experiment designs and interact with them: Hovering
the mouse cursor displays a vertical ruler that snaps to valid sample
sizes. Users can click on any experiment in the workspace to highlight
the associated curve. Users can also specify a margin of uncertainty
around the estimated effect size. The power chart then displays an
error band showing the corresponding margin of error on the power
calculation.

Touchstone2 uses Cohen’s f as the measure of effect size as it applies
to multiple types of experiments, including within-participant and
mixed designs'?. Type I and Type Il error rates (o, /3) are calculated by
integrating the probability distribution of a central and a non-central
F distribution (Figure 2.11). Since this calculation'® can reduce re-
sponsiveness, we optimize the numerical integration by adjusting the
direction of each iteration according to the overlap between the dis-
tributions (Figure 2.11, callout). On average, each curve can be calcu-
lated in 300 ms with a single thread running on a 2.5 GHz Intel Core
i7 processor. We also spawn one thread per curve to parallelize the
calculation.

12 According to the experiment design and selected effects (Figure 2.10, top), Touch-
stone2 adjusts how the means values (Figure 2.10, bottom) are aggregated and how
the degrees of freedom in the F' distributions are calculated from the number of par-
ticipants. See [Faul et al., 2007, Table 3] for detailed mathematical formulae.

BTo produce smooth curves, we calculate power for sample sizes between 1 and
50. At each step, we integrate the probability distribution piecewise, in 0.1 incre-
ments, and adaptively increase precision 10 times until the resulting curve increases
monotonically.
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Online Help

Touchstone2 displays contextual help to the right of the screen, encour-
aging users to weigh specific trade-offs relevant to their current de-
sign. Note that Touchstone2 is not intended as a standalone tutorial or
replacement for an introductory course and assumes a basic under-
standing of experiment design. Of course, Touchstone2 can comple-
ment an HCI experiment design course.

Collaboration and Sharing

Workspaces can be shared asynchronously using a simple web server.
Users can export their trial tables in CSV format for use with statis-
tical or other software, e.g., to log data. Users can publish experi-
ments using the TSL format (described below), which contains a con-
cise description of variables and nesting. Users can also export an en-
tire workspace, including spatial placement of the bricks, comments,
and power analysis input parameters, into an XML file. Touchstone2
can export Touchstone-compatible XML files and load them into its run
platform to present the experiment [Mackay et al., 2007].

Supported Platforms

Touchstone2 is implemented as a web application that works on SA-
FARI, CHROME, and FIREFOX. The code relevant to experiment design
is written in 3477 SLOC of JavaScript with extensive use of Google’s
BLOCKLY library'#. We debounce the change events within 200 ms be-
fore recomputing the trial table in a Web Worker!® to avoid blocking
the user interface. Touchstone? can be used locally or in conjunction
with a lightweight web server (18 SLOC PHP script) for sharing de-
signs.

Yhttps:/ /developers.google.com /blockly /
Bhttps:/ /www.w3schools.com/html/html5_webworkers.asp
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2.5.2 Touchstone language (TSL)

The counterbalancing strategy specified by Touchstone2 bricks is con-
verted into a text specification using the Touchstone language (TSL),
a domain-specific declarative language for describing randomization
designs, e.g., counterbalancing. The TSL design goals are to:

1. Provide a concise and unambiguous description of randomiza-
tion designs;

2. Cover a broad class of randomization designs;
3. Minimize operators for composing such designs; and

4. Reuse existing conventions as much as possible.

Each TSL experiment design is described by an assembly of experi-
ment design blocks that specify the counterbalancing strategy, the in-
dependent variables and their levels, and the number of replications.
For example, a Latin-square block with a 3-level IV DEVICE and four
replications is written as:

<Latin (Device={M,T,J}, 4)>

Blocks can be assembled into a complex experiment design us-
ing four operators: nest (A (B)),cross (A x B),concatenate
(< A, B >) and replicate (10 * A). For example, consider a
mixed-design experiment with one between-subject factor'®: POINTER
(ACCELERATED, STATIC), and a within-subjects factor: DEVICE
(MOUSE, TRACKPAD, JOYSTICK). This experiment tests different in-
dices of difficulty ID with one training session and ten test sessions.
In the training session, the order of the device is randomized, and the
ID is fixed between 2 to 3. In the test session, both factors are coun-
terbalanced with a Latin square. This experiment can be described in
TSL as:

< Training = Between (Pointer = {A,S}, 1,
Random (Device = {M,T,J,R}, 2,

!%Independent variables or IVs are also referred to as factors.
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Fix(ID = {2,3}, 1))),
10 * Between (Pointer = {A,S}, 1,
Latin (Device = {M,T,J,R}, 3,

Latin(ID = {2,3,5,6}, 1)))

TSL can express within-subjects, between-subjects, and mixed de-
signs. It implements four counterbalancing algorithms frequently
used in HCI studies: Latin-square, complete permutation, random as-
signment, and fixed order. More sophisticated counterbalancing algo-
rithms can be added as plug-ins. TSL also supports replications and
multi-session designs, which are currently beyond the scope of the
Touchstone2 block-based interface.

The TSL generator is written in TYPESCRIPT'” and compiled into
JavaScript. The full TSL grammar comprises 12 production rules writ-
ten in jison'®. The generator can be used from the command line (as a
Node.js application) or in a web application (as a JavaScript package)
to generate a trial table from a TSL specification.

TSL offers a compact and unambiguous format for communicating
experiment designs, and could be used to pre-register HCI experi-
ments Cockburn et al. [2018]. The textual format allows changes to
be easily identified with a diff tool and tracked with a version control
system. The Touchstone2 interface is more convenient for exploring
experiment designs, and can both read and export TSL specifications.

2.6 Evaluation

We ran two evaluation studies. A workshop assessed the Touchstone2
interface to see how well pairs of experienced researchers could coun-
terbalance an experiment created by one partner and explore design
alternatives. A second observational study focused on how individual
participants assessed the statistical power of their earlier designs.

https:/ /typescriptlang.org
Bhttps:/ /zaa.ch/jison/

>
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2.6.1 Workshop: Reproducing an Experiment

Participants

We recruited 17 experienced HCI researchers: 11 Ph.D. students, two
post-docs and four faculty members.

Apparatus

Each team worked with an early version of Touchstone2 on one of their
personal laptops. This version supported within-participant designs,
contextual help and fish-eye views of trial tables.

Procedure

16 participants worked in pairs, with at least one highly experienced
researcher in each team. The remaining participant, a senior faculty
member, worked alone. The workshop was conducted around a U-
shaped table to let teams easily participate in the group discussion.

The workshop lasted approximately 90 minutes, beginning with a 15-
minute introduction to Touchstone2 and a description of the following
tasks:

1. Choose your own current or recently published experiment;
2. Reproduce it with Touchstone2; and

3. Explore at least two variations of the experiment.

Participants had 60 minutes to work. Two authors observed the teams,
answered questions about Touchstone2 and noted any bugs, problems,
desired features or suggestions for improvement. We encouraged par-
ticipants to write any feedback or observations in the text area pro-
vided. Participants shared their impressions of Touchstone2 in a final
plenary discussion (15 minutes).
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Data Collection

We collected logs of each team’s experiment creation process, their
final experiment design(s) and their written feedback, as well as the
observers’ notes.

2.6.2 Results

Most teams (8/9) successfully reproduced their chosen experiment in
Touchstone2. (The unsuccessful team produced a simpler variation of
their experiment instead.) The experiment designs that participants
reproduced were relatively complex: Six teams reproduced experi-
ment designs that involve three variables. Among these, half orga-
nized variables into two nesting levels, and the rest used three nesting
levels. One team produced a design for four independent variables in
two blocks. All teams used a Latin square counterbalancing strategy
at least once. Two teams created a dummy independent variable to
denote training vs. testing trials.

All teams adjusted parameters within each design, e.g., number of
participants or counterbalancing strategies, and inspected how trial
tables change. Most teams (6/9) created multiple versions of an ex-
periment design (Mdn = 2, Max = 4). Two teams saved designs
with different time estimates and numbers of replications. Two others
produced versions with different nesting structures; one even split an
independent variable into two variables at the same nesting level.

In seven teams, only one partner knew the experiment details. They
mentioned that the visual representation of the experiment made it
much easier to explain the design. They also mentioned that automat-
ically updating trial tables encouraged them to explore more alterna-
tives.

Two teams found it difficult to keep track of the reasons why they
adjusted their design and suggested adding an annotation feature to
document the process. Although some were interested in highlighting
trial tables, teams that explored more complex designs emphasized
the need for highlighting the pattern of all conditions in a row. We
added these features to Touchstone2.
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2.6.3 Observational Study: Analyzing Power

Participants

Ten individuals from the workshop were available for the second
study: 5 Ph.D. students, 2 post-docs (P2, P10) and 3 faculty members
(P6-8).

Apparatus

Participants worked on a computer with a revised version of Touch-
stone2 that included power analysis. We uploaded the participant’s
final experiment design from the workshop.

Procedure

Sessions lasted approximately 30 minutes. The experimenter pre-
sented the interface changes in Touchstone2 (v0.2), using one of the
participant’s experiment designs as an example, and explained the
concept of statistical power, when necessary. Participants were then
shown how to toggle the power analysis mode.

Participants were asked to replicate their experiment, first reassess-
ing the current design and then determining the appropriate num-
ber of participants. We used a think-aloud protocol, with periodic
reminders. At the end of the session, the experimenter conducted a
semi-structured interview. Questions included how statistical power
analysis affected the number of participants they decided to recruit, as
well as comments about the user interface.

Data collection

We screen recorded 9/10 sessions and audio recorded all 10 inter-
views. The interviewer and an additional silent observer also took
field notes.
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2.6.4 Results

We selectively transcribed the audio and video based on field notes.
Two authors analyzed the transcripts using thematic analysis [Braun
and Clarke, 2006] using a bottom-up approach, i.e. without prede-
fined research questions.

Attitude

P14 were explicitly skeptical of power analysis because of (1) the dif-
ficulty in recruiting participants (P1-3), (2) the existence of minimum
sample size conventions (P3,P4): “in my statistics courses, the rule is
if you want to say anything that is relevant [sic] grab 30 or more.” (P4),
and (3) the lack of incentive to run power analyses (P2,P4): “until it
is mandatory in a submission I would never do it” (P2)). However, P2-4
mentioned its benefits while using Touchstone2.

Interpreting power charts

Five participants actively interpreted the power chart. Three wanted
the power “above [the threshold of 0.8] because it’s red” (P2). Three noted
the diminishing returns as the power curve starts to plateau: “The
curve also gives you information how worth it is to keep adding participants
beyond [the plateau]” (P5). Three said that power differences would in-
fluence their recruitment decisions: “If recruiting participants is not very
hard I would probably perhaps [add more]. It seems more sound.” (P10).
One said she would use the power chart to justify recruiting fewer
participants. “If I am struggling [recruitingl, I think the chart is useful to
say OK, no.” (P3)

Four participants said that power analysis would help make “a
stronger case” (P4) in their paper submissions, especially with small
numbers of participants. As a reviewer, P4 would judge a paper with
power analysis more favorably, although P6 was neutral about it.
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Barriers to power analysis

Understanding standardized effect size was a barrier for 9/10 partici-
pants (one of them is even an expert in statistics). Five said that they
do not know how to interpret standardized effect size: “What would be
the range of values that would normally be?” (P2); “What's the intuition be-
hind that? [...] and it is related to a specific domain although for me it doesn’t
say much” (P8, an expert in statistics) Of these, three are knowledge-
able about simple effect sizes, e.g., percentage difference. Participants
felt it would be cumbersome to manually fill in the cells in the cell-
mean table (3/10), and asked about how to deal with outliers in the
data (3/10). The two experts in statistics wanted greater transparency
in how effect size is calculated.

2.6.5 Summary

These results suggest that Touchstone2 encourages users to explore
alternative counterbalancing designs. However, 5/9 teams iterated
their designs within a single experiment brick assembly and did
not take advantage of the ability to manage multiple designs in the
workspace. A possible reason is that the trial table is updated imme-
diately after a change, making it easy to spot the effect of the change.
However, this loses track of earlier designs. We could address this by
improving the interface for accessing historical versions, and by mak-
ing it even easier to duplicate a design.

Although participants quickly understood the benefits of the interac-
tive power chart, the costs of estimating and interpreting standard ef-
fect size proved to be a major barrier. We thus revised the Touchstone2
interface to first present the power chart, using Cohen’s medium ef-
fect convention, and then provided options for controlling effect size
in increasing order of complexity (see Section 2.5.1). We also added
an explanation about standardized effect sizes and their calculation in
the context-sensitive help.
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2.7 Discussion

Touchstone2 opens several directions for future research for both prac-
tical and statistical aspects of experiment design.

2.7.1 Default Parameters and Status Quo Bias

To calculate power, Touchstone2? uses default parameters and Cohen’s
conventions [Cohen, 1988, Chapter 8]. These defaults allow us to
clearly signify the presence and the importance of statistical power
without first requiring additional input. Although these parameters
are customizable in the Touchstone? user interface, users may leave
them unchanged because of status quo bias [Kahneman et al., 1991]. We
recognize the risk that Touchstone2 might encourage blind adoption of
certain conventions without reflection, just as with the .05 threshold
for p-values in the NHST paradigm. However, we argue that this is-
sue arises in the teaching of statistics and experiment design, as well
as the peer-review process itself. We hope that Touchstone? can con-
tribute to the conversation about these issues. Ultimately, the trade-off
between supporting discoverability and the risk of oversimplification
is beyond the scope of this work.

2.7.2 Statistical Significance and Power Analysis

Power analysis in Touchstone2 is a practice under the null-hypothesis
significance testing (NHST) paradigm. The theory of power
analysis—regardless of the software tools—can be abused for p-
hacking. Researchers may calculate power mid-experiment and add
more participants until achieving statistically significant results. De-
spite this problem and other criticisms, conducting transparent and
valid research under the NHST paradigm is still possible through
preregistrations [Cockburn et al., 2018], transparent communication
of the results [Dragicevic, 2016, Transparent Statistics in Human—
Computer Interaction Working Group, 2019], and reporting effect
sizes [Transparent Statistics in Human-Computer Interaction Work-
ing Group, 2019, Chapter 2]. Touchstone2 also facilitates better NHST
practices. For example, Touchstone2 presents the relationship between
the number of participants and statistical power prominently in the
UL It also facilitates calculating effect size from the results of pilot
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studies or using effect sizes from the literature. (The HCI commu-
nity has created several guidelines and discussion such as [Yatani,
2016, Transparent Statistics in Human—-Computer Interaction Working
Group, 2019].) We believe that these aids will persuade researchers to
plan experiments with high statistical power instead of p-hacking.

2.7.3 Integrating Data Analysis

Experiment design is inextricably linked to data analysis: A plan to
aggregate data influences the experiment design. For example, Fitts’s
law experiments may be susceptible to high variance between trials
due to motoric noise. If multiple trial replications, i.e. the same user
performing the same technique multiple times, are averaged before
statistical analysis, the number of trials (from the counterbalancing
design) will differ from the sample size (in the power analysis). There-
fore, the researcher should consider a trade-off between adding par-
ticipants vs. increasing the number of trial replications for each par-
ticipant.

This highlights the need for a clearer link between experiment design
and data analysis. We believe that TSL and Touchstone2 offer a basis
for integrating both processes.

2.8 Conclusion

Our primary goal is to improve the quality and reproducibility of HCI
experiments by offering researchers a tool for specifying and compar-
ing alternative experiment designs. High-quality experiments require
trade-offs: For example, shorter experiments with fewer conditions
are easier to analyze and more comfortable for participants but pro-
vide potentially fewer results. These trade-offs are particularly chal-
lenging for HCI researchers, who commonly use small numbers of
participants and low-power statistical tests. Also, experiments are
more likely to be reproducible when researchers have complete and
unambiguous specifications of experiment designs, which may be un-
available in research papers due to the lack of common language and
page limits.



40

2 Touchstone2: An Interactive Environment for
Exploring Trade-offs in HCI Experiment Design

In this paper, we present four contributions. First, an interview study
reveals that experiment design is iterative and collaborative. Re-
searchers create, revise, and exchange design specifications and trial
tables. However, keeping them in-sync is tedious and error-prone.
Researchers also weigh the cost of participants against the benefit of
statistical power. Additionally, the cost of calculating statistical power
itself is also weighed against the practicality of its outcome. In sum-
mary, researchers navigate the trade-offs not only about the design
itself but also about their design process.

Based on these findings, we present Touchstone2, a direct manipu-
lation interface for generating, comparing, and sharing experiment
designs. Touchstone? lets researchers assess experiment designs with
four metrics: (1) learning effects, (2) session duration, (3) number of
participants, and (4) statistical power. These metrics are supported by
instantaneous feedback on trial tables and power charts as well as an
interactive visualization for inspecting them. All are provided in an
online sharable workspace.

To improve the reproducibility of experiments, we contribute TSL,
a declarative language for experiment designs that can express a
large class of designs with few constructs and operators. TSL lets re-
searchers share their designs in a concise and unambiguous format.
A design expressed in TSL can be imported into Touchstone2, and can
generate a trial table with a command line. Other GUIs for experiment
design can also use TSL as a backend. TSL could be integrated into fu-
ture preregistration, review, and publication processes to reduce am-
biguity of experiment designs. Future work may extend TSL to, e.g.,,
provide natural language descriptions or alternative visualizations.

Touchstone? was evaluated in two studies. Our results show that
Touchstone2 encourages experienced researchers to explore alternative
experiment designs and to weigh the cost of additional participants
against the benefit of detecting smaller effects.

Both Touchstone2 and TSL are available as open source projects’”. We
hope that they will provide a foundation for creating a repository of
HCI experiments that will act as a resource for researchers, students,
and educators to learn from existing experiment designs, weigh the
pros and cons of specific experiments, and ultimately contribute to
the reproducibility of HCI experiments in the research literature.

Bhttps:/ /github.com/ZPAC-UZH/Touchstone2
https:/ /github.com/ZPAC-UZH/TSL
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Chapter 3

Argus: Interactive a priori
Power Analysis

A key challenge HCI researchers face when designing a controlled ex-
periment is choosing the appropriate number of participants, or sam-
ple size. A priori power analysis examines the relationships among
multiple parameters, including the complexity associated with hu-
man participants, e.g., order and fatigue effects, to calculate the sta-
tistical power of a given experiment design. We created Argus, a tool
that supports interactive exploration of statistical power: Researchers
specify experiment design scenarios with varying confounds and ef-
fect sizes. Argus then simulates data and visualizes statistical power
across these scenarios, which lets researchers interactively weigh var-
ious trade-offs and make informed decisions about sample size. We
describe the design and implementation of Argus, a usage scenario
designing a visualization experiment, and a think-aloud study.

3.1 Introduction

Determining sample size is a major challenge when designing ex-
periments with human participants, e.g., in Information Visualiza-

Publications: The work in this chapter is a collaboration with Xiaoyi Wang, Wendy E. Mackay,
Kasper Hornbeek, and Chat Wacharamanotham. The author shared responsibility for both think-
aloud studies and the implementation. This work was published at VAST 2021 [Wang et al., 2021].
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tential confounds, e.g., fatigue or practice effects. (C) Power trade-off view simulates data
to calculate statistical power; and (D) Pairwise-difference view displays confidence intervals
for mean differences, animated as a dance of intervals. (E) History view displays an interactive
power history tree so users can quickly compare statistical power with previously explored

configurations.

tion (VIS) and Human-Computer Interaction (HCI) [Eiselmayer et al.,
2019, Hornbeek, 2013, Lazar et al., 2017a]. Researchers want to save
time and resources by choosing the minimum number of participants
that let them reliably detect an effect that truly exists in the popu-
lation. However, if they underestimate the sample size, i.e. the ex-
periment lacks statistical power, they risk missing the effect — a Type
IT error. Researchers are also less likely to publish these negative or
null results, the so-called “file drawer problem” [Rosenthal, 1979]. Re-
searchers cannot simply add participants until the results are signifi-
cant, which is considered a malpractice, and are strongly encouraged
to preregister the sample size to increase the credibility of the investi-
gation [Cockburn et al., 2018].

The sample size can be determined statistically with an a priori power
analysis. However, this requires approximating the effect size, which
quantifies the strength and consistency of the influences of the exper-
imental conditions on the measure of interest. Estimating an effect
size must account for the relationships between experimental condi-
tions; the inherent variability of the measures, e.g., differences among
study participants; and variation in the structure of the experiment
conditions, e.g., blocking and order effects. This complexity acts as
a major barrier to performing power analysis [Lipsey, 2009, Murphy
et al., 2014].

Studies in the natural sciences can rely on meta-analyses of multi-
ple replication studies to suggest effect and sample sizes. However,
in VIS and HCI, such replications are rare [Hornbaek and Law, 2007,
Kosara and Haroz, 2018] and not highly valued [Greenberg and Bux-
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ton, 2008]. Sample sizes (V) are often chosen based on rules of thumb
e.g.,, N > 12 [Eiselmayer et al., 2019], or drawn from small numbers
of studies [Caine, 2016, Hwang and Salvendy, 2010, Hornbeek and
Law, 2007]. Studies with human participants also risk confounding ef-
fects such as fatigue, carry-over, and learning effects. Analytical meth-
ods implemented with power analysis tools such as pwr [Champely
et al., 2018] or G*Power [Faul et al., 2007], are not usually sophisti-
cated enough to account for these effects. Furthermore, researchers
must often weigh the benefit of statistical power against high recruit-
ment costs, overly long experiment duration, and the inconvenience
of switching between experiment conditions [Mackay et al., 2007]. Al-
though several interactive tools help explore trade-offs among plausi-
ble experiment design configurations [Eiselmayer et al., 2019, Mackay
et al., 2007, Meng et al., 2017], few address the complex relationship
between statistical power and relevant experiment parameters.

Existing power analysis tools are designed as calculators: The user
specifies acceptable Type I and Type II error rates, test statistics, ex-
perimental design, and an approximate size of the effect. The tool
then produces either a single sample size or a chart showing how sta-
tistical power increases in conjunction with the sample size, at several
effect sizes. We argue that researchers need tools for exploring possi-
ble trade-offs between statistical power and the costs of other experi-
mental parameters, especially when the effect size is uncertain.

We propose Argus, an interactive tool for exploring the relationship
between sample size and statistical power, given particular configu-
rations of the experimental design. Users can estimate parameters —
effect sizes, confounding effects, the number of replications, and the
number of participants — and see how they influence statistical power
and the likely results in an interactive data simulation.

Contributions: We identify challenges and analyze the tasks involved
in a priori power analysis. We propose Argus—which combines inter-
active visualization and simulation to aid exploration and decision-
making in experiment design and power analysis. To demonstrate its
efficacy, we describe a use case and a think-aloud study.
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3.2 Background and Task Analysis

When planning an experiment, researchers use a strategy called a pri-
ori power analysis' to choose which sample size will allow the experi-
ment to detect an expected effect. Power analysis uses the relationship
between the sample size and the following parameters:

a is the probability of detecting an effect from an experiment
when it is actually absent in the population (Type I error: false
alarm). Researchers usually set a based on the convention of
each academic field, typically .05 for VIS, HCI, psychology, and
the social sciences.

1 — B, or statistical power, is the probability that a long run of
experiments will successfully detect an effect that is true in the
population. (f is the probability of a Type II Error: missing the
true effect.) If no existing basis exists, Cohen proposed a con-
vention of 0.8 [Cohen, 1988, p.56].

Effect size is the difference across means calculated from data
under each condition. Researchers make an educated guess of
the effect size based on previous research or their experience.
Effect sizes are standardized for the calculation, as described in
C3 below.

The sample size can be calculated with these parameters, either with
software or from a statistics textbook, e.g., [Cohen, 1988]. When fac-
ing resource constraints, such as personpower, time or budget, re-
searchers sometimes sacrifice statistical power in exchange for a more
attainable sample size. In cases where access to participants is lim-
ited e.g., patients, children or other special populations, power anal-
ysis may be skipped altogether. Even if the power analysis suggests
an unrealistic sample size, it might still offer a useful cost-benefit as-
sessment. In any case, researchers who choose to conduct a power
analysis still face the following challenges:

C1: Estimating a reasonable effect size is difficult. Researchers who
wish to estimate the effect size face a paradox: The goal of conduct-

! Although one can calculate achieved power from data collected during an exper-
iment, such post-hoc analysis is impractical for planning experiments or interpreting
the results [Cairns, 2019, p. 110] and [Yatani, 2016, section 5.9.4]. This paper thus uses
the term ‘power analysis’ to refer to a priori power analysis.
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ing the experiment is to discover the true effect size in the population,
but selecting the correct sample size for revealing that effect requires
an initial estimate of the effect size. Overestimating the effect size of-
ten leads to a sample size that exceeds available resources. Even for
studies that can easily scale up the sample size, using an overly large
sample size is “wasteful” and an “unethical” use of study participants’
time [Button et al., 2013]. Although researchers can conduct pilot stud-
ies, finding a large effect size in a pilot with few participants may be
misleading and result in an underpowered final experiment [Lakens
and Evers, 2014, p. 280]. Cohen proposed a guideline for standardized
effect sizes derived from data on human heights and intelligence quo-
tients [Cohen, 1977]. However, reviews in domains such as software
engineering [Kampenes et al., 2007] found that the distribution of ef-
fect sizes from experiments differ from Cohen’s guideline. Therefore,
many researchers recommend against using guidelines that are not
specific to the domain of study [Lenth, 2001, Cummings, 2011, Bagu-
ley, 2004]. In fields where replication studies are scarce, e.g., VIS and
HCI [Kosara and Haroz, 2018, Hornbak et al., 2014], researchers must
generate possible effect-size scenarios.

C2: Comparing power at multiple effect size scenarios is neces-
sary. Instead of estimating a single value for the effect size, some
researchers estimate the upper-bound—to represent the best case—
and the lower-bound—below which the effect is too small to be prac-
tically meaningful [Lenth, 2001, Lipsey, 2009, p. 57]—which results
in a range of sample sizes to consider (Figure 3.2, A-D). However, in
many experiments, the largest attainable sample size may be lower
than the one required by the lower-bound effect size (Figure 3.2, C).
Researchers must then weigh the benefit of further mitigating risk by
increasing the power and the cost of a larger sample size. Because the
function between the power and sample size is concave, improving
power is increasingly costly [Lakens, 2014b, p. 702] (Figure 3.2, A-B
vs. B-C). Among existing software for calculating statistical power,
only a few plot the statistical power and the sample size at different
effect sizes (see Section 3.3).

C3: Standardized effect sizes are not intuitive. The difference be-
tween means is an example of a simple effect size, which is based on the
original unit of the dependent variable and thus has intuitive meaning
for researchers. However, power calculation requires a standardized ef-
fect size, which is calculated by dividing the simple effect size with a
standardizer. The formula for the standardized effect size depends
on how the sources of the variances are structured, which in turn de-
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Figure 3.2: Determining power and sample size with effect-size un-
certainty and resource constraints.

pends on the experiment design. (See Appendix A for an example
on how blocking influences calculation of effect size.) Note how an
estimate in the form of a simple effect size may yield different stan-
dardized effect sizes. Researchers often have difficulty using stan-
dardized effect sizes when choosing their sample size, since these are
“not meaningful to non-statisticians” [Baguley, 2004].

C4: Power analysis excludes the temporal aspect of experiment de-
sign. Power analysis simplifies sources of variations into a few stan-
dard deviations within effect size formulee. (See Appendix A for an
example.) Potential confounds—e.g., the fatigue effect or the practice
effect—lose their temporality once encoded into standard deviations.
This loss could be a reason that separates power analysis from the rest
of the experiment design process [Eiselmayer et al., 2019]. Better in-
tegration of temporal effects and design parameters—e.g., number of
replications and how conditions are presented to study participants—
could allow better exploration of trade-offs.

3.2.1 Task Analysis

Under the What-Why-How framework [Brehmer and Munzner, 2013,
Munzner, 2015], the task abstraction could be described as follows.
All of the attributes below are quantitative unless stated otherwise.

T1: Come up with an effect size estimate. Simple effect sizes—the
difference in the responses between conditions—could have been esti-
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mated directly. Alternatively, the estimation can be simplified by first
estimating the mean in a baseline experimental condition, and then
deriving the value of other conditions by comparing each with the
baseline. The conversion from the simple effect size to the standard-
ized effect size (C3) could be automated when the information about
experiment design is available in a computable form.

T2: Check the potential outcome effect size. For experiments with
two independent variables or more, the possibilities of the interaction
effects could obfuscate how the a priori effect sizes influence the final
results. (More details in Section 3.4.2) A data simulation could allow
the users to compare the simulated effect sizes among themselves or
to compare them with the specified input—especially in the presence
of interaction effects.

T3: Determine candidate sample sizes. Researchers browse for the
sample size with a reasonable trade-off within a set of constraints (e.g.,
resources for participant recruitment). To facilitate efficient brows-
ing, they identify features of the relationship between power and
sample sizes, e.g., where the power-gain is steep or where it plateaus.
Multiple scenarios (C2) of effect sizes could also generate different re-
lationships, leading to the need to compare their trends.

T4: Try out potential scenarios. Due to uncertainties in effect size es-
timation (C1), researchers need to be able to explore the dependency
between their effect size estimates and other parameters—e.g., the fa-
tigue effect (C4)—to the power-sample size relationship. Thus, they
need to be able to record and review the scenarios. Some changes to
the scenarios are categorical—e.g., different choices of counterbalanc-
ing strategies. Others are quantitative—e.g., different amounts of the
fatigue effect. The abstract data type of the scenarios could be a multi-
dimensional table with each input parameter as a key and the resulting
power as an attribute. However, this abstraction does not capture re-
searchers’ exploration traces. Such traces could be abstracted as a tree
in which each child node is a scenario that is derived based on its par-
ent node.

3.3 Related Work

Before the prevalence of personal computers, researchers used look-
up tables [Cohen, 1988, pp. 28-39]) and charts [Scheffe, 1959]) in text-
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books to determine the relationship between sample size, effect size,
statistical power, and Type I error rate, usually fixed at .05. Early soft-
ware packages simplified the process by providing command-line or
menu interfaces to specify parameters, and displayed a single value
for statistical power. Goldstein [1989] surveyed 13 power analysis
software packages and highlighted the lack of two key functions: plot-
ting a chart of the trade-offs between parameters, and capturing in-
termediate results for comparison. Borenstein et al. [1992] pioneered
the use of visualization to specify input parameters and inspect rela-
tionships among parameters. For input, the tool shows a box plot of
the dependent variable by condition on the screen. The simple effect
size can be specified by moving the mean and standard deviation of
each group with arrow keys or function keys. The software then out-
puts the effect size and power in real-time. It also produces a chart
showing the relationship between power and sample size under mul-
tiple effect-size scenarios (see Figure 3.2, left). Nevertheless, due to the
low screen resolution, the relationship chart is presented on a separate
screen from the input specification, hindering interactive exploration.
This tool also restricts analysis to between-subjects designs with two
conditions and does not support exploration of the impact of choices
in experimental design.

G*Power [Faul and Erdfelder, 2004, Erdfelder et al., 1996, Faul et al.,
2007] is one of the most widely used power analysis software tools to-
day. G*Power developers prioritize covering multiple types of statis-
tical tests and high-precision calculation rather then facilitating explo-
ration [Erdfelder et al., 1996]. G*Power calculates power from one set
of input parameters at a time. This forces them to record parameters
and output at each step of the exploration process. G*Power generates
a static chart from a given range of standardized effect sizes.

Some software packages integrate power analysis with experiment
design. JMP’s design of experiment (DOE) function [SAS Institute
Inc., 2016] provides a menu interface for power calculation and gener-
ates static charts similar to those of G*Power. The R package skpr
[Morgan-Wall and Khoury, 2018] provides a menu-based interface
for generating experiment designs. However, it only calculates and
shows a single power estimate at a time. To explore different effect size
scenarios, users must manually save and restore states via their web
browser’s bookmark function. skpr provides a menu interface for
generating experiment trial tables and calculating power. However,
it provides only the power of the entire experiment design: all vari-
ables that take part in the counterbalancing contributes to the power
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analysis. Touchstone2 [Eiselmayer et al., 2019] provides a direct ma-
nipulation interface for specifying experiment design and displays an
interactive chart that visualizes the relationship between the number
of participants and power. Unlike skpr, users can select a subset of
independent variables to include in the power calculation. This lets re-
searchers include nuisance variables in the counterbalancing design,
without affecting power calculation. Even so, Touchstone2 does not
include confounding effects and relies on menus to specify effect size.

Several researchers have shown that graphical user interfaces (GUI)
are better than menus for specifying estimations. Goldstein and Roth-
schild [2014] compared numerical and graphical interfaces to elicit
laypeople’s intuitions about the probability distributions of events.
They show that users achieve greater accuracy when they can specify
distributions graphically. Hullman et al. [2018] support these results
in the context of estimating effect sizes for experiments. We argue that
power analysis software would benefit from such graphical represen-
tations of relationships among parameters, with a GUI to manipulate
them.

3.4 Argus User Interface Design

The Argus interface is organized into: parameter specification (A-E),
simulation output (F-G), and the history view (H) (Figure 3.3). Users
begin by specifying metadata about the independent variables in a
pop-up window (Section 3.4.1). They can then explore various effect-
size scenarios by manipulating the means of the dependent variables
for each condition (A). They can also estimate potential confounds (B);
and explore how different experiment designs (C-E) influence the out-
come (F-G). The history view (H) automatically saves the exploration
process and lets users re-load previous scenarios. The rest of this sec-
tion describes the interface using the example of a 2 x 2 experiment
on how MEDIUM (PAPER v.s. SCREEN) and LAYOUT (ONE_COLUMN
v.s. TWO_COLUMN) influences READINGTIME.

3.4.1 Metadata

To facilitate interpretation of simple effect sizes (C3), Argus needs the
semantics of the dependent variables. Researchers supply this infor-
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changes when both the parent and the sibling are locked); (C) Scenarios show: increasing
the condition-mean, increasing the group mean, and locking the group-mean.

mation once, at the start of the session. Note that, since many domains
use a common set of dependent variables, such as time and error for
VIS and HCI, in future, we expect researchers to select relevant de-
pendent variables retrieved automatically from a public domain on-
tology. Similar ontologies already exist in bioinformatics [Soldatova
and King, 2006], and Papadopoulos et al. [2016] have proposed an on-
tology that specifies dependent variables for VIS and HCI. The current
metadata interface is thus a makeshift.

Argus requests the name, unit, expected range, interpretation, and the
variability of each dependent variable (DV). Argus computes initial
ranges for both axes of the interactive charts (Section 3.4.2), and the
sliders that adjust various confounds (Section 3.4.4). Argus uses the
natural-language interpretation, e.g., “30 minutes is faster than 50 min-
utes”, to make it easier to read the pairwise plot (Section 3.4.3).

3.4.2 Expected-averages View

Argus uses a direct manipulation interface to determine effect sizes,
which lets users work with simple effect sizes (T1) and explore mul-
tiple effect-size scenarios. Instead of specifying mean differences, Ar-
qus lets users specify the expected mean of each experimental condi-
tion. This condition-mean specification lowers user’s cognitive load
because they can flexibly estimate each condition individually.
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Argus presents the condition-mean relationship as a bar chart (Fig-
ure 3.3.A), and the bar colors are drawn from the 2D colormap of
Bremm et al. [2011] by assigning one dimension per variable?. Users
can estimate each condition-mean by dragging the bar vertically. Hor-
izontal lines encode the group-mean—calculated from all conditions
of an independent variable—and the grand-mean—calculated from
all independent variables (Figure 3.4.left). Despite the potential for
within-the-bar bias [Correll and Gleicher, 2014], encoding the bars
keeps condition-mean visually distinct from the group-means and the
grand-mean. Users can switch the hierarchy level of the condition axis
in the bar chart via radio buttons. We describe two common use cases
for expressing effect size:

Main effects occur when a particular level of an independent vari-
able causes the same change in the dependent variable, regardless of
the level of other independent variables. For example, a main effect
of MEDIUM on READINGTIME could be that reading on a SCREEN
is generally slower than reading on PAPER. To specify this as a
main effect, the user would have to drag two bars (ONE_COLUMN
and TWO_COLUMN of the SCREEN condition) upward by equivalent
amounts. This becomes tedious when the independent variable has
many levels.

Interaction effects occur when the mean within each group differs
according to the level of another independent variable. Suppose we
want to express how the LAYOUT affects READINGTIME. As above, we
register MEDIUM as a main effect, but ensure that the group means for
SCREEN and PAPER remain the same.

If the user changes the (ONE_COLUMN, SCREEN ) bar, the group-mean
of the SCREEN condition will also change. To keep the same group
mean, the user must first remember the group-mean prior, and then
adjust the other bars to compensate.

Both scenarios involve manipulating multiple conditions simultane-
ously by dragging group-means and the grand-mean. Users can also
lock some means while changing the rest, and the system automati-
cally propagates the changes. However, enabling this interaction tech-
nique is tricky because of the hierarchical dependency among these
values.

2We use the Color2D library: dominikjaeckle.com/projects/color2d/
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Figure 3.5: (A) Pairwise-difference view for selecting which effects to
include. (B) Dancing confidence interval shows the mean differences,
with (C-D) natural language labels on either side. (E) Holding a Shift
key displays labels for mean difference and Cohen’s d (F).

Argus implements a propagation algorithm (Appendix B and Fig-
ure 3.4, right). The relationship between the hierarchy of means is
represented as a tree rooted at the grand-mean. A change to a par-
ent node—the grand-mean—is first recursively propagated to the chil-
dren, e.g., group-means and then the condition-mean. The amount of
change is distributed evenly to all unlocked children. After finish-
ing the change propagation, the update moves upward. If the update
reaches a locked parent, the change is distributed to any unlocked sib-
lings. The propagation algorithm offers users flexibility, letting them
switch seamlessly through different representations at different levels,
not only individual conditions, but also main and interaction effects.

3.4.3 Pairwise-difference View

To help users evaluate the consequences of their effect size estimates
(T2), we simulate the data and show the difference between means
and their confidence intervals in the Pairwise-difference view (Fig-
ure 3.5). The horizontal axis shows the difference in the original unit
of the dependent variable—a simple effect size (C3). The horizontal
axis lists all possible comparison pairs. An independent variable with
m levels can accommodate (') pairwise comparisons. For each pair,
we show the mean difference, displayed as a black dot, together with
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its 95% confidence interval, displayed as a black line. Unlike the bar
charts used for input (Section 3.4.2) this reduces bias [Correll and Gle-
icher, 2014]. Although violin plots reduce bias somewhat, we chose
the dot-and-line display because they can fit more lines into a limited
space. This is crucial when comparing two sets of parameters side-by-
side with the history function (Section 3.4.4).

In Figure 3.5.B, the difference appears to the left of the zero indicator.
Had we presented the result on a normal number line, it would have
appeared on the negative side, and the chart could have been inter-
preted as: “the difference is around minus 4 minutes”. Since reading
double negatives is cognitively demanding, we present absolute val-
ues on both sides of zero on the horizontal axis, and add annotations
on the left and the right margin (C and D). This makes it easier for
users to interpret, e.g., “SCREEN is faster for around 4 minutes”. Users
can press-and-hold the shift key to show the normal number line with
negative values on the left of the zero, in Figure 3.3.E. This mode lets
users change the label on the left margin to present a mathematical dif-
ference (“SCREEN- PAPER”). For advanced users, Argus also annotates
Cohen’s d standardized effect size above each confidence interval.

In Figure 33.F both SCREEN-PAPER and ONE_.COLUMN-
TwO_COLUMN are selected. Suppose we are only interested in
comparing reading media because the layouts were included as a
nuisance variable. Deselecting the “ONE_COLUMN- TWO_COLUMN”
checkbox might yield a slightly narrower confidence interval for the
“SCREEN- PAPER” difference. The reason for this improvement is
that the difference between the two layouts is slightly smaller in the
PAPER condition (Figure 3.3.A), i.e. there is an interaction effect.

Since Argus shows simulated data instead of real data collected from
an experiment, we need to ensure that users are aware of the uncer-
tainty generated by the simulation. We thus use the dance of the CIs, a
time-multiplexing approach that shows the results of multiple simula-
tions in the same figure [Cumming, 2012, Dragicevic et al., 2019]. The
animation runs in 2 fps, to allow the user to notice changes between
frames [Trick and Pylyshyn, 1994]. An alternative to the dance ani-
mation is a forest plot that displays all confidence intervals from the
simulation next to each other, with a diamond shape to summarize
them [Cumming and Calin-Jageman, 2017, Chapter 9].

We chose the dance because it uses less screen space, and motion is a
strong visual cue. Even when the user focuses somewhere else on the
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screen, the animation is registered in their peripheral vision. In ad-
dition, users can pause the animation and navigate individual frames
by the left and right arrow keys on the keyboard.

3.4.4 Exploring Trade-offs

At each effect-size scenario, users can increase power by adding more
participants, increase the number of trial replications in the counter-
balancing design, or both. Some experiments may be constrained by
participant fatigue and need to limit the duration, whereas for other
experiments, the cost of recruiting additional participants may out-
weigh the drawbacks from the fatigue effect. Argus lets users explore
how different experiment design scenarios and confounds can influ-
ence power (T4), as shown in Figure 3.3. Users estimate levels for each
potential confounding effect (B) and select an experiment design pa-
rameter accordingly (C-E). They explore how the trade offs change
based on sample size and power (G), and can revisit and compare ear-
lier explorations with the History view (H).

Confound Sliders

Confounding effects can be specified by sliders (Figure 3.3.B). When
users drag a confound slider, Argus shows a pop-up overlay to pre-
view its effect (Figure 3.6). The pop-up is a bar chart showing how the
measurement of the dependent variable (vertical axis) could change
along with the experiment trials (horizontal axis). The order of trials
and the effects are calculated based on the choices in the Experiment-
design view (Section 3.4.4).

Four types of confounds are of interest in power analysis [Lazar et al.,
2017b]. For readability, we will explain each of them in terms of
reading time. Increasing the fatigue effect (Figure 3.6.A) would cu-
mulatively increase the reading time for each subsequent trial (Fig-
ure 3.6.B). The carry-over effect (Figure 3.6.C) occurs when the user is
unfamiliar with the task itself: Their performance is worst in the first
trial, but gradually improves over subsequent trials, regardless of the
experimental condition. The practice effect has two variations: The
within-condition practice effect (Figure 3.6.D) represents improvements
resulting from the participants’ familiarity with each experimental
condition. Thus, improvement in one condition does not influence
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Figure 3.6: (A) Adjusting the ‘fatigue’ confound effect level (B) dis-
plays its corresponding influence on the data, as well as (C) carry-over
effects, (D) practice effects per condition and (E) for the whole experi-
ment.

subsequent trials in other conditions. The whole-experiment practice ef-
fect (Figure 3.6.E) results from users’ familiarity with the task, regard-
less of experimental condition. This is the opposite of the fatigue ef-
fect. A participant in our think-aloud study (Appendix D) pointed out
the difference between these two practice effects, and we plan to in-
corporate the whole-experiment practice effect in the next version of
Argus.

The confound pop-ups use a bar chart to encode the level of the de-
pendent variable. We take advantage of the Gestalt law of similar-
ity to let the user associate the color-coding of conditions to those in
the Expected-averages view. Future versions of Argus could include a
more advanced interaction technique that lets users specify a range or
a probability distribution for each confounding variable.

Argus uses the dependent variable metadata (Section 3.4.1) to deter-
mine the range for each slider. The direction of the available values
depends upon which direction users specify as the “better” direction.
For example, in Figure 3.3.B, the variability is set to 5 minutes, and
the interpretation is specified as “slower is better”. These settings
create a fatigue-effect slider ranging from 0-15, and a practice-effect
slider ranging from -15-0. All sliders are initially set to zero to repre-
sent no confounding effects. Argus also provides an additional slider
for specifying variations across participants.
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Experiment-design View

The effect of confounds such as the fatigue effect could even out across
participants if the experiment is properly counterbalanced. In the run-
ning example, the experiment has four conditions. A complete coun-
terbalancing would require covering the 4! = 24 possible orderings
of the conditions, which would in turn require recruiting a multiple of
24 participants. Alternatively, users might consider using a standard
Latin Square design, which addresses the order effect between adja-
cent trials. This Latin Square design requires only multiples of four
participants, allowing for greater flexibility in the sample size.

Recruiting fewer participants than required multiple may lead to
an imbalanced experiment, and affect both the observed effect and
power. Finally, users could collect several replications of data from
each participant. This number of replications influences the trial ta-
ble, and thus influences how the confounding effects contribute to the
data.

In the field of HCI, several tools exist for counterbalancing design
[Eiselmayer et al., 2019, Mackay et al., 2007, Meng et al., 2017]. Eisel-
mayer et al. [2019]’s interview study suggests that counterbalancing
design and power analysis are performed in two separate loops. We
envision that users should use one of these tools to come up with ex-
periment design candidates. Then, these candidates can be imported
to Argus. For these reasons, we present a minimal user interface for
counterbalancing design: a drop down list for selecting the counter-
balancing strategy (Figure 3.3.C) and two sliders for the number of
replications (D) and the number of participants (E). These controls
work together with the Power Trade-off view and History view.

Power Trade-off View

The Power Trade-off view (Figure 3.3.G) is the heart of power explo-
ration (T3). It visualizes the outcome of the adjustments in Expected-
averages view, Confound sliders, and Experiment-design view. The vi-
sual encoding is based on the chart relating power vs. sample size,
commonly used in statistics textbooks, e.g., [Scheffe, 1959]. The sam-
ple size appears on the horizontal axis and the power on the vertical
axis. The current selection of the sample size is represented as a dot,
and the relationship between these two parameters are displayed as a
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black curve. We used this encoding despite the fact that the underly-
ing data is discrete—the sample sizes are integer—because curves fa-
cilitate interpretation of the local rate of change Cleveland and McGill
[1986], which is usually the case when researchers assess power trade-
offs.

Touchstone?2 [Eiselmayer et al., 2019] enhanced this textbook chart by
automatically showing the confidence band around the current pa-
rameter set, which was calculated from a single “margin” parameter.
In Argus, variations in power can originate from any of a combination
of multiple sources, e.g., effect size or confounds, making it difficult
to determine which are associated with the confidence band.

Argus enhances this chart in two ways: First, Users can switch the hor-
izontal axis between the sample size and the number of replications.
Setting the axis to the sample size shows the number of replications
annotated on the right end of the power curve. This switch could be
used when the sample size faces a stricter constraint than the number
of replications, or vice versa. In Figure 3.3(G), suppose the resource
constraint allows the recruitment of a maximum of 24 participants,
which results in the power of 0.7. Users can now consider the trade-
off between the number of replications and power.

Second, Argus shows the chart individually for each of the pairs of
independent variable levels, e.g., Figure 3.3.G, shows “SCREEN- PA-
PER”). Users can change the pair with a drop-down menu. Argus
shows a warning if any pairs produce lower power than the current
pair. The user can also select the “Minimum power” option to always
display the pair with the lowest power. Although this pair-selection
is also present in the Pairwise-difference view, the selection in Power
Trade-off view is independent: Switching it does not trigger a simula-
tion. This independence allows the user to explore nuisance factors
without changing how the confidence interval of differences is calcu-
lated.

History View

The History view (Figure 3.3.H) ties together all above-mentioned
views to enable exploration of scenarios in light of uncertainty from
effect size estimation and confounds (T4). Argus thus improves on
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other power analysis systems that force users to record each scenario’s
output before manually comparing them. (Section 3.3).

Each step of parameter adjustment is recorded automatically in an
abstract tree. The root of the tree is the initial setting of zero effect
size with no confounding variables. The tree is visualized on a two-
dimensional cartesian coordinate with the vertical axis showing the
power. The horizontal axis shows the depth of the node from the root.
Each node is encoded as a white circle with black outline, and it is
connected to its parent node with a line. The current node is encoded
in a black circle to associate it to the the dot in the Power Trade-off view
with the Gestalt principle of similarity. Adjusting a widgets in the
views mentioned above creates a child node. Clicking on a past node
restores its parameters all other views. The restoration excludes the
selections in the Power Trade-off view to enable users to retain their
current focus, as described in Section 3.4.4. During exploration, it is
likely that only a few nodes will be of interest. Users can mark/un-
mark a node by clicking a button. An additional concentric outline
circle is added to each of the marked nodes.

In addition to restoring the parameters, users may hover their mouse
cursor over a node to preview its parameters and output. The pre-
view values are shown in orange, simultaneously with the values of
the current node in black (Figure 3.3). We use juxtaposition and super-
position faceting techniques. These two techniques were analyzed in
Javed and Elmqvist [2012]’s survey of composite visualization. Their
analysis found that for tasks that focus on direct comparison in the
same visual space, superposition is more effective than juxtaposition.
For the Power Trade-off view, since decisions about sample size usu-
ally take place around the few crucial values (see C2 and Figure 3.2),
we superpose the curves. For the Confound sliders and Experiment-
design view, the sliders and the drop-down list, preview values are
also superposed. For the Expected-averages view, however, both super-
position and juxtaposition would be appropriate. Here, superposition
allows the bars representing the current state to provide a stable visual
anchor.

For the Pairwise-difference view, the uncertainty communicated by the
animation would be muddled when two superposed confidence in-
tervals overlap. Therefore, we juxtapose the preview error bars side-
by-side (Figure 3.3.F). For the History view itself, we highlight nodes
and edges in the current branch during preview.
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Figure 3.7: (A) Relevant error estimates based on Correll et al.’s data; (B) The power is plotted
against the number of participants 1-, 2-, and 3-replication scenarios. (In Argus UlI, only the
maximum of two curves are shown at a time during interactive comparison.) (C) Power
trade-off curve of three-replication with the fatigue effect of 5 ms (in black) and 7.5 ms (in
orange). (D) The History view showing two branches: three-replication (in orange) and two-
replication (in black).

We also decided to limit the comparison to two nodes—the current
node and the preview node—to reduce visual complexity. A pairwise
comparison of historical nodes together with the marking functions
allows users to gradually narrow down the parameter choices.

Scaling the Design for More Complex Experiments

Our prototype supports within-participants designs with two inde-
pendent variables. More complex experiment designs may have more
than two independent variables, and each independent variable could
have more levels. Only two views will be affected: The Expected-
averages view could present more levels by incorporating the fish-eye
technique [Rao and Card, 1994]. To address more independent vari-
ables, the system should allow the users to reorder the hierarchy in
the horizontal axis—e.g., by drag-and-drop. Users should also be able
to exclude some of the independent variables from the axis, which
will summarize several bars of the same level into one, which fur-
ther reduces the visual complexity. As for the Pairwise-difference view,
scrolling and panning could be necessary to handle the increased
number of pairs. When their effect sizes are very different in the mag-
nitude or sign, the comparison could be broken down into subsets,
presented in separate windows.
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3.5 Implementation Details

Argus was written in HTML and JavaScript. We used D3,js® for in-
teractive visualizations. Experiment designs are implemented in the
TSL language and trial tables are generated on the client-side with the
TSL compiler [Eiselmayer et al., 2019]. Statistical calculations are im-
plemented in R* and Shiny5. We used a MacBook Pro (2.5GHz, 16GB
memory, MacOS 10.14) for all benchmark response times.

To enable interactive exploration in Argus, we make the following
three implementation details that differs from standard statistical pro-
cedure for a priori power analysis and post-study statistical analysis.

3.5.1 Monte Carlo Data Simulation

Power can be calculated from an « probability value, a standardized
effect size, and a sample size. However, incorporating confounds, e.g.,
a fatigue effect, is analytically complex (C4). Instead, we use a Monte
Carlo simulation, based on algorithm 1 of [Zhang, 2014]: First, a popu-
lation model is created programmatically, based on an estimate of the
mean and the standard deviation (SD) of each condition. From this
population, we sample data sets and use them to calculate statistics.
The Monte Carlo paradigm has been shown to be robust for tricky
cases such as data that are not normally distributed, missing data,
or mixed distributions [Muthén and Muthén, 2002, Schoemann et al.,
2014, Zhang, 2014].

We extend the algorithm to incorporate confounding variables: First,
we obtain a trial table for the specified experiment design from the
TSL compiler. Based on the trial table’s structure, we generate each
confounding effect specified by the user in the interface (Section 3.4.4).
For example, a two-second fatigue effect for movement time cumula-
tively lengthens each subsequent trial by two seconds. All confound-
ing effects are added to each simulated data set before calculating
statistics. Data simulation and confounding calculations are vector-
ized. On average, we can generate a data set with 50 participants and

*d3js.org
“r-project.org
®shiny.rstudio.com
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10 replications with all confounding effects in place, in less than 30 ms
on our benchmark machine.

3.5.2 Making Power Calculation Responsive

Calculating statistical power is computationally expensive because it
requires a numerical integration between two overlapping probability
distributions (see Fig. 11 of [Eiselmayer et al., 2019]). Furthermore,
post-hoc power calculation uses an observed effects size from the data,
which may differ from the input effect size due to confounding effects.
To calculate observed effect sizes, we must fit a general linear model
for each data set. In normal statistical analysis, such model-fitting is
done only once, so results appear almost instantaneously. However,
plotting the chart of sample size and power (Figure 3.2) requires one
calculation per simulated data set. By default, Arqus generates 1000
data sets for each sample size. Here, we show the sample size from 6
to 50. On our benchmark machine, the entire calculation takes around
two-three minutes.

To ensure the responsiveness of the user interface, we first approx-
imate the observed effect size with a pairwise Cohen’s d calculated
with the pwr.t.test function from the pwr package [Champely
et al., 2018]. The average turn-around time is 200 ms. Model-fitting
results are sent progressively to the user interface, which updates ac-
cordingly. We further ensure responsiveness, we also make further
tweaks in the communication between R, Shiny, and Javascript as de-
tailed in Appendix C.

3.5.3 Statistical Model and Pairwise Difference Calculation

After modeling participants as a random intercept, we derive the ob-
served effect size and the pairwise difference in terms of means and
confidence intervals from mixed-effect models. (See Fry et al. [2016]’s
HCT statistics textbook for more details on the model choice.) Argus
automatically formulates a mixed-effect model and a contrast matrix
for generalized linear hypothesis testing, based on the user’s choice of
the condition pairs of interest (Section 3.4.3), We use the 1me4 pack-
age [Bates et al., 2015] for model fitting and the multcomp R package
[Hothorn et al., 2008] for the test. Confidence intervals are calculated
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with a single-step adjustment with the family-wise error rate set at
a = .05.

3.6 Use Case

To demonstrate how to use Argus, we draw an example from a
study on color ramps from Smart et al. [2020]—of which the study
plan could have been informed by a similar study by Correll et al.
[2018]. Additionally, both studies made their data publicly available,
allowing us to derive additional information for planning and testing.
We first describe the background of both studies—which constrains
the parameter space to be later explored with Argus. To aid cross-
referencing, we highlight relevant values in bold. Calculation details
are provided with R code in supplementary S2.

3.6.1 Background

Smart et al. [2020] propose to generate color ramps based on a cor-
pus of expert-designed ramps by using Bayesian-curve clustering and
k-means clustering. Their experiment compared four types of ramps
(BAYESIAN, K-MEANS, DESIGNER, and the baseline LINEAR) in three
visualization types (scatterplots, heatmaps, choropleth maps), in a to-
tal of 12 conditions. In each experimental trial, study participants are
asked to identify a mark on the visualization that matches a given nu-
merical value. They measured errors and aesthetic ratings. Because
a comparable aesthetic data were unavailable in prior works, this use
case focus only on the errors, which is defined as |vgiven — Vselected -

To plan their study, Smart et al.’s study could have leverage infor-
mation from Correll et al.’s experiment °. The latter used the same
identification task, albeit only heatmaps are used as the visualization.
Their study investigated how color ramps can be used to encode both
values and uncertainty. Although their experiments have different
conditions compared to Smart et al.’s, two of their results are rele-
vant: (1) the significant difference between continuous vs. discrete
color map, and (2) the absence of a statistically significant difference

6Al’chough Smart et al. [2020] mentioned that their study was similar to [Gra-
mazio et al., 2017], the latter concerns categorical palettes rather than quantitative
color maps.
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between wedge-shaped vs. square-shaped color legend. The former
can be used as an upper-bound and the latter as a lower-bound for
the effect sizes. Since Correll et al.’s accuracy was defined differently
from Smart et al.’s error, we use Correll et al. [2018]’s data to calculate
the errors—which result in the statistics shown in Figure 3.7.A.

In addition to the effect sizes, we also retrieved the duration informa-
tion. In each trial of the relevant experimental condition, participants
took 8.5 seconds. Since the stimuli of Smart et al.’s study was four
times larger, we extrapolate each trial to take 34 seconds. In Correll
et al. [2018]’s study, the median session duration was 13.5 minutes.
We also analyzed the data for the fatigue effect and found it negligible
with the estimate in Figure 3.7.A, row 7.

Smart et al. [2020] recruited 35 expert designers as their study par-
ticipants; we use this number as a maximum number of participants.
On the opposite, we consider 12 as a minimum number of partici-
pants based on a rule of thumb [Eiselmayer et al., 2019]. Since the
participants were experts, they might be less willing to participate in
a long study. Therefore, we constrained the longest session duration
to 30 minutes. Leaving 5 minutes aside for instruction and informed
consent, this results in the maximum of 3 replications ((25 minutes
x 60 seconds) + (12 conditions x 34 seconds) = 3.6, rounding down)
We used the randomized counterbalancing according to Correll et al.
[2018]’s design. We will aim for power above 0.8—according to Co-
hen’s recommendation [Cohen, 1988, p. 56].

3.6.2 A priori Power Analysis

In the following scenario, the goal of the researcher’is to determine the
sample size (number of replications and number of participants) for
his experiment. As mentioned above, these decisions are constrained
by the total duration of the session, maximum number of participants,
and potential for confounding effects. The exploration starts with the
upper-bound and lower-bound scenarios and proceeds to explore a
potential fatigue effect.

"The researcher will be further referred to as a gender-neutral “he”.
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Upper-bound Scenario

He started with 12 participants and 1 replication. He moves the grand
mean to 0.64 and the group-means of conditions other than the LIN-
EAR to 0.32 (T1). These values are from Correll et al. [2018] discrete
conditions (Figure 3.7.A, row 1), and its difference to the continuous
conditions (Figure 3.7.A, row 3). On the Power Trade-off view, the re-
searcher sees that the power of the effect between LINEAR— DESIGNER
pair almost 1.0, which is very high—indicating that if the effect size is
large, only 12 participants would be adequate (T3).

Lower-bound Scenarios

He moved the group-mean of the DESIGNER condition to 0.55 (from
Figure 3.7.A, row 6). The power drops to around 0.4. One way to
address this is to increase the number of replications to 2 and 3, re-
sulting in the power of 0.7 and 0.9 respectively (T3). He hovers his
mouse cursor on the history nodes to superpose the power curves in
Power Trade-off trends (Figure 3.7.B). According to the curve, for one-
and two-replication designs, adding participants would dramatically
increase power. However, for 3-replication setting already have rela-
tively high power (T3).

Naturally, the researcher would hope that the BAYESIAN and K-
MEANS will be better than DESIGNER ones. However, he does not
know a priori which of the two algorithmically-generated ramps will
be better. To reflect these beliefs, he moved both BAYESIAN and K-
MEANS to 0.46 (T1). These values reflect a small effect when compar-
ing with DESIGNER condition. However, when comparing with LIN-
EAR condition, the difference is sizable. In the Power Trade-off view,
he switches to the pair Designer — Bayesian and found the power to
be above 0.8 (T3). The pair-wise difference (Figure 3.8) shows the dif-
ference between all pairs except BAYESIAN vs. K-MEANS to be larger
than zero. Also, the difference between LINEAR and the two algorith-
mic conditions is larger than between LINEAR and DESIGNER. Results
like these matches the researcher’s expectation; therefore, he marked
this point in the History view as a plausible design (T2).
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Fatigue Effect Scenarios

From the scenario above, the total duration of a study session is 20.4
minutes (3 replications x 12 conditions x 34 seconds/trial). This du-
ration is longer than Correll et al. [2018]’s median of 13.5 minutes.
Therefore, it is possible that the fatigue effect may have influenced the
experiment. To explore its impact, he adjusts the fatigue effect to 5,
7.5, and 10 ms per trial—according to Figure 3.7.A, row 7—and found
that the power drops very low (T4). Therefore, he changes his explo-
ration strategy to determine how much of the fatigue effect could his
study design tolerate at the maximum number of participants of 35.

He set up the 35 participants without any fatigue effect as a starting
point and mark it in the History view. Then, he creates two branches
of scenarios: two- and three-replications. In each branch, the explore
the three levels of fatigue effects mentioned above (T4), resulting in
Figure 3.7.D. The two-replication scenarios seem not to change the
power much (T3)—and hence robust to the fatigue effect. However,
collecting two data points per condition could be susceptible to out-
liers.

On the other hand, in the three-replication branch, the power reduces
dramatically as the fatigue effect increases (T3). By selecting one node
(fatigue: 5 ms/trial) and hovering on another (fatigue: 7.5 ms/trial),
he can compare the two corresponding curves in the Power Trade-off
view (Figure 3.7.C). From the orange line in this chart, he can see that
if the fatigue effect is higher than 7.5 ms, the experiment will need
more than 35 participants to achieve power at least 0.8. He could not
effort this scenario (T3).

To decide between the susceptibility to outliers or the fatigue effect,
he could run a pilot study to assess the impact of the fatigue effect
with the three-replication setting. If the fatigue effect is 0.5 ms/trial or
lower, an experiment with only 22 participants would be adequately
powerful. We validated this potential choice by a simulation that re-
samples data from Smart et al. [2020]’s result and found that recruiting
only 22 participants are likely to generate similar outcome as those re-
ported in Smart et al.’s paper. The simulation details is provided in
supplementary S2.
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Figure 3.8: The pairwise difference plot from the case study.

3.7 Think-aloud Study

To better understand how Argus users could be used in power analy-
sis, we conducted a formative study that aims to answer the following
research question: What insights can researchers gain from being able
to interactively explore the impact of design choices for their experi-
ments. The study was preregistered (Anonymized URL) and is fully
described in Appendix D. This section provides a summary.

3.71 Method Summary
Participants

Nine researchers in HCI and/or VIS participated in our study. Five of
them were experienced researchers who has conducted three or more
experiments. They were either senior scientists (post-doc or higher),
and one was a senior-year Ph.D. student. The rest of them were Ph.D.
students or post-docs who had learned about experimental method,
but had planned less than three experiments. Henceforth, the partic-
ipants in our study will be referred to as “users” To avoid confusion
with the “number of participants” term in Argus.

Task and Procedure

We used a think-aloud protocol where users voice their observations
and reasoning [Lewis, 1982]. The users watched a video explaining
Argus and relevant concepts in experiment design and statistics. Then,
they used Argus to determine a sample size for a Fitts’s law experi-
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ment based on a summary of prior findings. At the end of the session,
we interviewed and asked them to rate their experience.

Data Analysis

We recorded users’ screen and audio think-aloud and interview re-
sponses. We performed a qualitative analysis with bottom-up affinity
diagramming with the focus on insights [Saraiya et al., 2005].

3.7.2 Selected Results

Overall, the majority of the users reported that they have gained new
insights about experiment design:“the preview is very useful to under-
stand the confound effects.” (P9x). P7n, P8y were not familiar with carry-
over effect and practice effect but they expressed their understanding
of the difference between these effects when they saw the previews.
Five users applied their experience in conducting experiment to con-
sider potential confounds. For example, P8y said “adding more repli-
cations can yield higher power but participants may be tired [so] I need to
increase the fatigue.” after increased the number of replications.

The influences of the number of replications and participants to power
were explicitly observed: “The power is very high now. I am going to
tweak replications and participants to see how power is going to change [...]
reduce the number of participants, power drops down. It makes sense” (P4).
Participants also interpret the characteristics of the curve in Power
Trade-off view: “The power get stabled after a certain number of partici-
pants. The current number of participant is a bit too much. We can reduce
the number” (P5).

However, three of the expert users were initially puzzled why chang-
ing the practice effect slider did not influence the mean-differences
nor the power. The study moderator had to point out that the effect
was prevented by the Latin-square counterbalancing, or because only
one replication was used. This result suggests an opportunity to im-
prove users’ awareness when causal links are muted by a moderating
parameter. (See the transition matrix in Appendix D for how users
inferred the causality between power analysis parameters)
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Five users tweaked expected confounds and observe how the power
of adjacent nodes in the History view gradually changes. Four users
repeatedly used the hover function to preview the difference. Two ex-
pert users use the branching to explore multiple strands of parameter
configurations. These behaviors show that the History view success-
fully facilitates the exploration of statistical power.

3.8 Lessons Learned

We have went through many cycles of design, prototyping, and test-
ing. It was fascinating to see how the context of use (statistics) influ-
ence users’ expectation and behavior when interacting with Argus. We
would like to share three lessons:

L1: Enabling visual exploration and close-loop feedback generates
curiosity about causal relationships. The History view enables users
to compare different scenarios. Our task analysis shows that the fo-
cus of comparison is the relationship between the statistical power
and sample sizes. Therefore, in an early version, hovering the mouse
cursor on a historical node showed the differences only in the Power
Trade-off view and the Pairwise-difference view. For other views, the in-
put parameters were temporarily reverted back to the state of the his-
torical node. For example, the knob of confound sliders is positioned
at the state of the historical node. However, users who tested this ver-
sion of Argus are curious to see the differences in the input parameters
as well. We surmised that the immediate feedback from simulated
data and the the affordance for parameter exploration piqued their
curiosity of the causal relationship between each of the input param-
eter to the power. This evolution of users’ need is another evidence
that visualization design is essentially iterative.

L2: The ease of verbalization could be important for integrating the
domain knowledge to interpret visualized data. In Pairwise-difference
view, we used points and error bars to visualize the results of simula-
tion. An early version of Argus shows output in terms of arithmetical
difference (Figure 3.5, E). Some users struggled to understand the ef-
fect when the difference falls on the left of the zero. To address this
problem, we changed the default display mode to show natural lan-
guage labels (Section 3.4.3). After this addition, we did not observe
this difficulty. Automatically-generated verbal description of visual-
ization has been shown to help users understanding statistical test
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procedures [Wacharamanotham et al., 2015] and to support under-
standing of machine-learning models [Hohman et al., 2019]. We con-
jecture that, for the tasks that requires users to combine visual inter-
pretation with their domain knowledge, verbalization is important for
the users to successfully integrate visual processing with their knowl-
edge.

L3: When asking for a ballpark, avoid precise terms. Argus needs
a rough approximation of the standard deviation (SD) of the popula-
tion of the dependent variable to initialize the range of the confound
sliders. This initial value is important to set an appropriate range and
granularity of the sliders. However, it does not need to be precise. Af-
ter the sliders are initialized, users can come back to change this value
any time to expand or contract the range of the slider. In an earlier
version, the Ul simply asked the user to input a number into a text
field with the label “Approximated SD”. This question turned out to
be difficult for people we pilot-tested the software with. Some of our
colleagues even invested time to lookup research papers in order to
give an accurate value. In a later version of Argus, we reworded it
to “Variability”, which is a broader term that could be understood as,
e.g., SD, variance, or simply a range. This change seems to lower the
users” anxiety and proceed to use Argus faster. We conjecture that the
context might have also putting the users unnecessarily on guard. Pi-
lot testing with users are helpful to identify such unintended barriers,
especially for the choke points of the task flow.

3.9 Discussion

Argus is another addition to the ecology of tools developed in the VIS
and HCI community aiming to improve practices in experiment de-
sign and statistical analysis. Like previous works [Wacharamanotham
et al.,, 2015, Eiselmayer et al., 2019], Argus demonstrates the power of
direct manipulation interfaces to assist in the tasks previously domi-
nated by menu- or command-based interfaces. These works add in-
teractivity to existing domain objects (statistical charts and trial tables)
to allow the users to specify, compare, and explore diverse outcome pos-
sibilities. These common interaction capabilities and the mappings
between abstract concepts in experiment design and statistics to inter-
active visualizations seems to suggest an emerging design pattern for
a more usable software tools for research scientists.
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The challenges that these works—including Argus—face is the lim-
ited user to participate in evaluation studies. In other words, our
studies have low power— while we are advocating for the impor-
tance of powerful studies. Specifically, we face a trade-off between
the coverage of use cases (e.g., which experiment designs to sup-
port) and realism of the studies. For Arqus, we set the scope of
use cases by pre-determining the scenarios for the study participants.
Although this makes the implementation tractable, the participants
might be less motivated to explore—compared to when they design
their own experiments. However, researchers usually design and con-
duct only a few experiments per year, which imposes a challenge of
collecting meaningful longitudinal data. On the other hand, one could
assess learning achievements by novices (e.g., as in [Wacharaman-
otham et al., 2015]), but it is unclear how much the design implica-
tions drawn from such learning studies could apply to experts. In
summary, we need a methodology that allows studying infrequent
knowledge works being conducted by experts.

3.10 Conclusion

Our goal is to help VIS and HClI researchers consider statistical power
when planning their experiments with human participants, which re-
quires performing a priori power analysis. This paper provides three
key contributions. First, we present a detailed analysis of the prob-
lems faced by experimenters and identified key challenges and ab-
stract tasks.

Second, we describe the design and implementation of Argus®, an
interactive tool for exploring statistical power, and illustrate how it
addresses each of the challenges above. Argus is the first direct-
manipulation tool that lets researchers (1) dynamically explore the
relationships among input parameters such as expected averages or
potential confounds, statistical outcome, and power; and (2) evaluate
the trade-offs across different experiment design choices.

Third, we describe a use case of designing a visualization experiment
based on real studies published in TVCG and CHI. The use case illus-
trates how Argus could be used to incorporate information from prior

8 Argus is openly available at https:/ /zpac-uzh.github.io/argus/
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work and explore possible outcome and power scenarios, resulting in
an informed decisions for pilot studies and the actual experiment.

Finally, we conducted a think-aloud study to assess how Argus helps
researchers gain insights from exploring relationships among exper-
iment design concepts and statistical power. We found that Argus
helped both junior and senior researchers to better understand and
appreciate the importance of statistical power when conducting con-
trolled experiments.

We view Argus as a first step towards an ecology of interactive soft-
ware tools that improve the rigor of designing and conducting exper-
iments in VIS, HCI, and beyond.
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Chapter 4

SPEED: a Flexible Protocol
for Planning the Sample Size
of HCI Experiments

Controlled HCI experiments are often designed to evaluate the effec-
tiveness of novel interaction techniques or artifacts. However, esti-
mating an appropriate sample size can be challenging due to, for ex-
ample, a lack of data from prior work. Sequential experimental design
(SED) is a method designed to save time, money, and other resources
in medical and psychology experiments by stopping data collection
early if the effect is stronger or weaker than expected. SED requires
pre-determining the effect size and the sample size. In HCI, reliable
effect sizes are rare because of the prevalence of small-sample studies
and the paucity of replication studies. To determine sample sizes, HCI
researchers often rely on heuristics. We introduce SPEED: a novel pro-
tocol that incorporates other statistical techniques for systematically
estimating the effect and sample size under the mentioned constraints
of the HCI literature. We demonstrate SPEED with data from two pre-
viously published HCI experiments, provide templates for planning
and analysis as R Markdown notebook, and provide a checklist for
designing and reviewing SPEED experiments. We also present a web

Publications: The work in this chapter is a collaboration with Wendy E. Mackay, Michel Beaudouin-
Lafon, Kasper Hornbaek, and Chat Wacharamanotham. The author is responsible for the use cases,
protocol, demonstration, and implementation. This work is currently under revision and is planned
for submission to TOCHI. The supplementary materials will be available when the paper is published.
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application that eases exploration and comparisons of experimental
design candidates. We discuss how SPEED enables researchers to de-
scribe and justify nuances and factors influencing their sample-size
decisions.

4.1 Introduction

Controlled experiments in the field of Human-Computer Interaction
(HCI) usually involve human participants. Determining an appropri-
ate number of participants—or sample size—is an issue that is fre-
quently discussed in the HCI research methods literature, see [Robert-
son and Kaptein, 2016, Cairns, 2019, Hornbeek, 2013, Lazar et al,,
2017a]. Having too few participants leads to statistically underpowered
studies that cannot detect effects of interest [Rosenthal, 1979]. A non-
significant effect could result in not writing or publishing a paper, as
papers with null results tend to be rejected. The tendency to reject pa-
pers with non-significant results leads to the “publication bias”, where
published studies make up only a small percentage of the larger num-
ber of studies that have been conducted [Rosenthal, 1979]. In the field
of HCI, Cockburn et al. [2018] proposed addressing the publication
bias by requiring that experimental studies be preregistered. How-
ever, no HCI conference or journal has adopted preregistration as a
requirement.

A priori power analysis can be used to estimate sample sizes for statis-
tically powerful experiments based on effect sizes. Effect size estima-
tion is challenging in HCI because replication studies are rare [Horn-
beek et al., 2014] and undervalued [Greenberg and Buxton, 2008]. Fur-
thermore, sample sizes in HCI experiments, except crowdsourcing
studies, usually range from 2-30 participants [Barkhuus and Rode,
2007, Hornbeaek and Law, 2007]. Small-sample studies are likely to
yield imprecise effect sizes, with a wide confidence interval, or in-
accurate effect sizes, that differ from those that actually occur in the
population [Gelman and Carlin, 2014]. Shifting from frequentist to
Bayesian estimation statistics could allow knowledge to accumulate
across studies [Kay et al., 2016b]. However, its adoption has been hin-
dered by the complexity in determining and understanding the choice
of prior probabilities as well as the lack of direct replications [Phelan
et al., 2019, Sarma and Kay, 2020, Hornbzek et al., 2014].
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To help HCI researchers better plan the number of participants,
we present SPEED—the Sequential Protocol for Efficient Experiment
Design—a comprehensive protocol for choosing the sample size for
an experiment. This protocol extends a priori power analysis to in-
clude sensitivity power analysis and two statistical techniques from
the fields of psychology and clinical medicine: Sequential Experimen-
tal Design (SED) and Bias- and Uncertainty-Corrected Sample Size
(BUCSS). When resource constraints dominate the sample-size deci-
sion, the sensitivity analysis can be used to determine how likely a
particular study’s sample size will detect any effects large enough
to be practically useful. When the literature only has small-sample
studies, the uncertainty caused by their imprecise effect sizes can be
mitigated with the BUCSS extension of a priori power analysis. SED
helps prevent underpowered and overpowered studies by letting re-
searchers terminate data collection early—without affecting Type 1
error—, either in cases when the effect sizes are too small to be prac-
tically significant or much larger than the initial estimation. We com-
bine sensitivity power analysis, BUCSS, and SED into a principled de-
cision process for sample sizes in controlled experiments (Figure 4.1).
This combination of methods specifically addresses effect size avail-
abilities (Table 4.2) and small sample sizes in HCI [Caine, 2016]. These
techniques operate within a framework of frequentist statistics, e.g., t-
test and ANOVA, that many HCI researchers are familiar with. These
methods are also compatible with Open Science practices such as pre-
registration.

Each of these techniques are already widely used outside HCI. With
SPEED, we assemble them into a systematic decision protocol suitable
for designing HCI experiments. Our goal is to help HCI researchers ef-
ficiently maximize their use of limited resources and participant pools.
Towards this goal, we present three contributions:

* an introduction to sensitivity power analysis, SED and BUCSS
with two detailed examples that illustrate their benefits over tra-
ditional approaches for planning HCI experiments;

* R templates and a checklist for authors for reporting studies us-
ing SED and BUCSS and for reviewers to assess their rigor; and

e SPEEDX, a web application for researchers explore possible
SPEED experimental designs.
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4.2 Background and Motivation

Controlled experiments are one of many evaluation methodologies
available for HCI research for late-stage designs'. Eiselmayer et al.
[2019]’s interview study shows that researchers face several chal-
lenges when designing controlled experiments, including visualizing
and comparing design alternatives. They also find that constraints,
such as access to participants, limit the applicability of a priori power
analysis for sample size planning. According to Wang et al. [2021]
analysis, one of the challenges in a priori power analysis is the un-
certainty in effect size estimation. Indeed, Cockburn et al. [2018] and
Cockburn et al. [2020] argue that many HCI experiments are necessar-
ily exploratory because the field has yet to establish a strong empiri-
cal foundation and because the technologies and application contexts
change rapidly.

Researchers face one of the following cases when planning the sample
size for their experiments:

1. The literature reports relevant effect sizes obtained from a siz-
able amount of samples;

2. The literature only reports effect sizes from small-sample stud-
ies; or

3. No applicable effect size is available from the literature.

Only in the first case, researchers can use an a priori power analysis to
statistically support their decision on the number of participants. In
fact, according to our survey of CHI proceedings from 2015 to 2020 in
Table 4.1, among the average 420 papers per year that report a con-
trolled experiment, less than ten papers per year (2.3%) use a priori
power analysis to plan sample size. (See Appendix E for details.)

Even if the field of HCI make a concerted effort to produce system-
atic reviews and meta-analyses, the resulting effect sizes could still
be unreliable. The publication bias cause the effect sizes from these
studies to be overestimated [Brand et al., 2008]. Brand et al. [2011]

"We agree with Greenberg and Buxton [2008] that controlled experiments are un-
suitable for early design iterations [Greenberg and Buxton, 2008, p. 113]. Other le-
gitimate evaluation methods should be used instead [Greenberg and Buxton, 2008,
p- 114,117].
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CHI full papers 2015 2016 2017 2018 2019 2020 Average
Used controlled experiment(s) 315 369 391 464 474 507 420
Planned sample size with a priori PA 1 3 3 8 6 9 5

Table 4.1: Number of papers that use controlled experiments vs. those that used a priori
power analysis (PA).

found that when the effect sizes are small or medium, the publication
bias is the major source of effect-size distortion [Brand et al., 2011].
However, this problem could be mitigated by aggregating the mea-
surements over multiple trials or question items—which are common
in HCI, e.g., the average movement time in Fitts’s law studies or the
workload score from NASA-TLX.

Unlike in other fields of study [Fanelli and loannidis, 2013, Carter and
McCullough, 2014], the field of HCI has yet to systematically study
the prevalence of the publication bias and its effect on the effect sizes.
However, there are signs of effect-size inflation: In a meta-analysis
of text-entry experiments published at CHI conferences [Obukhova,
2021], standardized effect sizes from 21 research papers were aggre-
gated into small-, medium-, and large-effect groups. The aggregated
effect size of the small and medium groups were lower than the corre-
sponding Cohen’s d benchmarks [Cohen, 1988, section 2.2.3]; whereas
the effect size in the large group exceeded the benchmark. Thus, ac-
cording to Brand et al. [2011]’s consideration, the text-entry literature
is likely to be susceptible to the effect-size inflation—that is large effect
sizes show up for small experiments giving a sense that the effects are
stronger than they really are. Therefore, even if meta-analyses become
widespread in HCI in the future, researchers still need to be vigilant
of overestimated effect sizes.

Let us turn to the latter two cases: when only small-sample studies
or when no previous studies are available. The uncertainty about or
the lack of relevant effect size may cause researchers to underestimate
the effect size during an a priori power analysis, resulting in sample
sizes that are too large to be practical. Thus, some researchers deem a
priori power analyses irrelevant or only suggestive [Eiselmayer et al.,
2019]. Instead, researchers use rules of thumb, e.g., “more than 12”
[Eiselmayer et al., 2019, Hwang and Salvendy, 2010] or a local stan-
dard within each application domain [Caine, 2016, Hornbaek and Law,
2007].
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Running an experiment with too few participants is likely to lead to
non-significant effects, which consequently contributes to the publica-
tion bias and may encourage HARKing [Cockburn et al., 2018, 2020]
(Hypothesizing After the Results are Known). Running an experiment
with too many participants, on the other hand, can be seen as a waste
of resources: participants, time, and money.

This situation, however, is constrained by an assumption that the sample
size must be set before collecting any data. But this fixed-sample assump-
tion is, in fact, not necessary, as demonstrated by techniques that have
been in use in the fields of medicine and psychology for a long time
already.

4.21 Techniques for Adapting the Design of On-going Ex-
periments

According to textbooks on experimental design in HCI—such as
[Lazar et al., 2017a, p. 459] or [Purchase, 2012, p. 78]—sample size
decisions must be finalized before data collection. This practice of
fixed-sample design (FSD)? is designed to control the probability of
committing a Type I error () with statistical tests that analyze the
whole dataset Neyman [1942, 1956], Pearson [1955]. Other methods
for choosing the sample size include sequential experimental design
(SED), adaptive trial design (AD), and Bayesian experimental design
(BED). We describe each of them below and summarize the flexibility
each method provides in Table 4.2.

FSD SED AD BED

Stopping before the full sample size

Increasing the sample size beyond the initial plan

Changing experimental conditions to during the experiment

Running multiple statistical analyses before the end of the experiment
Simple additions to preregistration compared to FSD

Requires data monitoring committee for transparency

X X X X X
X SN X XN
S XS SSS
AR I NN

Table 4.2: Flexibility and practicality of experimental design methods.

*The term fixed-sample design was first used by Pocock [1977] in his paper that
proposes sequential experimental design. This term is still used in contemporary
literature such as the FDA guideline [Food and Administration, 2019].
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Sequential Experimental Design (SED)

Instead of conducting one statistical test after finishing data collection,
researchers can run the test at multiple intervals as data accumulate,
while controlling for the probability of Type I error. In 1969, Armitage
et al. [1969] showed that this control could be achieved by lowering
the a level for each of the tests. Subsequently, in 1977, Pocock [1977]
proposed the sequential experimental design procedure, which lets
researchers plan to analyze data at pre-specified intervals and stop
an experiment early when the effect sizes are much smaller or much
larger than anticipated. SED can be applied to design studies that use
any counterbalancing design and is considered a routine practice in
medical experiments [Gaydos et al., 2009]. Pocock [1977]’s procedure
and its subsequent improvements have been called “group-sequential
design”, “sequential analysis”, or “group sequential trial”. We use the
term “sequential experimental design” to avoid confusion with terms
that HCI adopts from psychology.

Adaptive Trial Design (AD)

Adaptive trial design methods, including the seminal work by Bauer
[1989], enable researchers to modify the design of an on-going ex-
periment by incorporating information that becomes available after
the experiment starts—e.g., from data collected so far or data from
external sources. Adaptive trial designs enable researchers to add
or drop independent variables or their levels, change the magnitude
or dosage, change the number of trials, or change counterbalancing
strategies [Pallmann et al., 2018]. AD and SED were developed sepa-
rately until it was recognized that SED is a special case of adaptive
trial designs pBauer et al. [2016], Food and Administration [2019].
Researchers can also add AD to an existing SED study [Miiller and
Schifer, 2001]. To ensure that researchers make appropriate choices,
AD studies require researchers to work closely with a data monitoring
committee throughout each experiment [Gaydos et al., 2009]. Report-
ing the results of AD studies is also challenging because there is no
method for calculating point and interval estimations (e.g., mean and
confidence intervals) that is generalizable to all AD designs [Pallmann
etal., 2018].
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Bayesian Experimental Design (BED)

The use of the word “Bayesian” in experimental research can be am-
biguous [Campbell, 2013] as it can mean Bayesian analysis or Bayesian
experimental design. Bayesian analysis uses information that is avail-
able before the experiment—e.g., from previous experiments in the
literature—to create a set of prior probability distributions to be used
in statistical models during data analysis. This method can be ap-
plied to fixed-sample, sequential, or adaptive experimental designs.
For fixed-sample designs, several works have introduced Bayesian
analysis to HCI, e.g., [Kay et al., 2016b, Phelan et al., 2019]. Bayesian
analysis can also be used with SED experiments: Stopping rules can
be defined in a Bayesian manner [Schonbrodt et al., 2017], and at the
end of the experiments, researchers can calculate credible intervals or
Bayes factors. The resulting credible intervals or Bayes factors do not
require additional adjustments [Jennison, 1999, section 18.1]—unlike
frequentist SED (see Section 4.4.6).

By contrast, Bayesian experimental design is a set of decision-making
procedures for AD experiments [Lai et al., 2012, Food and Adminis-
tration, 2019]. It requires experimenters to define a utility function
that guides design choices before starting to collect data. While an
experiment is on-going, this method uses the information collected
so far to optimize design choices for the remainder of the experiment
[Chaloner and Verdinelli, 1995]. Experiments that are designed with
this method can use Bayesian or frequentist statistical analysis. BED
does not guarantee the probability of Type I and Il error, so researchers
must estimate them with a simulation. The simulation procedures
are currently only available for parametric models—e.g., requiring the
normality assumption [Lai et al., 2012].

4.2.2 Choosing a Suitable Method for Designing HCI Exper-
iments

SED, AD, and BED each enable the sample size to be flexible, a prop-
erty that we have shown to be desirable for HCI experiments. AD
and BED also enable the flexibility of adjusting experimental condi-
tions, but at a higher cost and complexity in planning, monitoring,
and analysing the experiment. We argue that the flexibility in exper-
imental conditions is rarely necessary because HCI research can nar-
row them down by using, e.g., preliminary studies and pilot studies.
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These pre-experiment studies can also collect richer data, e.g., with
qualitative methods, to help refine the experimental design further.

SED is simpler than AD and BED, making it easier for reviewers and
readers to assess the validity and transparency of design decisions. It
addresses the typical HCI problem of effect size uncertainty in small-
sample studies, and it can help in situations where the sample size is
the primary limitation in the design, e.g., when requiring a population
with specific characteristics.

[Lakens, 2014a] argued for adopting SED for controlled experiments
in psychology. His article offers a tutorial for basic two-condition
between-subjects design, a guide on using a GUI application for plan-
ning, and an Excel spreadsheet to compute adjustments for the statis-
tical results. Our work further facilitates the adoption of SED in three
ways:

1. We provide templates that cover within-subjects or mixed exper-
imental designs.

2. Our templates are reproducible and can be preregistered.

3. We characterize the choices of spending function and discuss
how to choose one.

In a broader view, our paper also situates SED in a broader experimen-
tal design process to address the characteristics of the CHI literature
as described in Section 4.2.

In the next section, we propose how SED and two other techniques
can be used systematically to make sample size decisions more flexi-
ble. We describe the additional information needed by SED, provide
recommendations for authors and reviewers, and offer a checklist for
using the process we propose.

4.3 Motivating Use Cases

Our protocol extends the researcher’s toolbox with a tool that can save
participants when they are not absolutely necessary. Saving partici-
pants is particularly useful in the following three use cases: large on-
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line studies, studies with hard to access participants, and studies repli-
cating small-sample studies. We present these three use cases along
with the challenges that researchers face in these situations. Section
4.5 describes how SPEED addresses them.

4.3.1 Large Online Studies

Online studies tend to be easier to scale up than studies conducted in
the lab. However, researchers often need to recruit extra participants
to address the possibility that data from some participants needs to be
dropped, e.g., if participants fail attention-check tasks.

For example, Hofman et al. [2020] wanted to understand how partic-
ipants estimate the magnitude of an effect when representing it with
either a confidence interval or a prediction interval. The study in-
cluded attention-check tasks to exclude data from participants who
failed them. Based on a pilot study, the researchers conducted an a
priori power analysis yielding a sample size of 1,700 participants. The
pilot study also revealed that roughly 30% of participants failed the
attention-check tasks. Thus, the researchers estimated the upper limit
for the sample size to be N = 2,400 and proceeded to recruit that many
participants. However, it is difficult to figure out how large the sample
size actually needed to be.

Challenge: To plan the sample size of an online study, researchers
need to consider the possibility that the sample size yielded by the
power analysis needs to be increased to accommodate poor data qual-
ity. With SPEED, researchers can plan online studies with an increased
sample size, but data collection can be stopped early if the data quality
is better than expected.

4.3.2 Studies With Hard to Access Participants

Lab studies are a common evaluation method to assess artifacts in
HCI. Judicious use of participants is desirable in the following circum-
stances:

1. when the participant pool is limited, e.g., in accessibility studies;
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2. when participants” involvement in a study renders them ineli-
gible to be included in future studies, e.g., studies that involves
deception may make the participants suspicious of subsequent
similar studies [MCGRATH, 1995, Hornbak, 2013]; and

3. when access to participants is difficult because they are very
busy, e.g., surgeons [Avellino et al., 2021].

In these circumstances, researchers have to weigh these downsides
with the benefits of having a larger sample size, i.e. higher statistical
power.

For example, Wu et al. [2014] wanted to understand if their interactive
checklist system helped medical staff to be more effective in respond-
ing to crises. They planned a controlled experiment to compare their
system with the existing paper-based checklist and no checklist at all.
It was difficult to estimate how many medical staff should be recruited
for the evaluation, and the experimenters were aware that the time of
the medical staff was precious. In the end, having spent two years
designing their system, they decided to recruit all available medical
doctors and practicing medical students from their participant pool
(N = 37) in order to maximize the chances of getting a significant re-
sult.

Challenge: To plan the sample size of a study where judicious use of
participants is important, researchers need to trade off the sample size
with the desired confidence in the statistical findings. With SPEED,
researchers can plan the study with the whole participant pool, but
stop data collection if the effect is much stronger than expected.

4.3.3 Replicating Small-sample Studies

Replicating and extending existing studies is common in experimental
fields, but is not as widespread in HCI even though it could strengthen
the validity of previous results and help improve artifacts and inter-
action techniques. However, when replicating a small-sample study,
researchers should consider recruiting a larger sample than the origi-
nal study:.

For example, earlier work has explored how users can enter sensi-
tive information in public settings. Khamis et al. [2018] compared
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the performance of 17 users entering a PIN with three input tech-
niques: touch, mid-air gestures, and eye gaze, and found that touch
was fastest. Mathis et al. [2021] wanted to find out if the same re-
sults obtain in a virtual reality (VR) setting, so as to make it easier to
run future similar studies. It was difficult to figure out the number of
participants to use in a replication of Khamis et al. [2018] because in
addition to the normal considerations about sample size, the estimate
of the effect size might be inflated due to the low number of partici-
pants in the original study. In the end, Mathis et al. [2021] proceeded
to replicate with the same (low) number of participants as the original
study (N = 15).

Challenge: To plan the sample size of a replication study based on
previous small-sample studies, researchers need to consider the pos-
sibility that the original effect size is overestimated. With SPEED, re-
searchers can use a power analysis that adjusts for small-sample stud-
ies, and stop running participants if the effect replicates as expected.

4.4 Sequential Experimental Design and Sample
Size Adjustment with SPEED

Sequential experimental design and sample size adjustment are two
procedures that expand fixed-sample design. To introduce these con-
cepts, we first give an overview of SPEED, and then explain these two
procedures in detail.

44.1 Overview

According to the interview study by Eiselmayer et al. [2019] about
fixed-sample experimental design, researchers start with the concep-
tualization of the design and specification of hypotheses. Next, they
explore possible counterbalancing designs, which determine the num-
ber of replications, the blocking, and the counterbalancing strategies.
While iterating the experimental design, researchers sometimes con-
duct an a priori power analysis to inform the sample size, i.e. the num-
ber of participants. After the study is planned, they proceed to collect
all data, conduct the analysis, and report its results (Figure 4.1, left).
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Figure 4.1: The process diagram of SPEED with SED and sample size adjustment. The dashed

decisions are optional.

SPEED extends the sample size planning, data collection, and analysis.
Figure 4.1 (right) shows an overview of the whole process with un-
changed components in white, sample size adjustment components in
green, and sequential experimental design (SED) components in yel-
low. Because of their synergies, we present them both as an integrated
process, but each could be used independently from each other. As
with fixed-sample design, researchers start with the conceptualization
of the design. Next to the counterbalancing design, which remains
identical, researchers conduct one of three different power analyses to
determine the sample size or the smallest effect size of interest (SESOI)
for the study (Section 4.4.2). The choice depends on the availability of
related effect sizes. The counterbalancing design, the sample size, and
the SESOI are used to plan the interim analyses with the respective
boundaries for halting or commencing the monitored data collection
(Section 4.4.3). Researchers collect data until an interim sample size is
reached. At this point, researchers perform the statistical analysis for
the main hypothesis (Section 4.4.4). If all results are statistically sig-
nificant, researchers can stop the data collection. If at least one result
is not significant, researchers can decide whether or not to continue
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the study based on the effect size. After stopped data collection, re-
searchers adjust the analysis results and conduct auxiliary analyses
such as an assessment of order or interaction effects (Section 4.4.6).

4.4.2 Power Analysis

In fixed-sample design, researchers conduct an a priori power analysis
with an effect size and a statistical power to determine a single target
sample size. The SPEED protocol incorporate several common situa-
tions in HCI: when the effect sizes are unavailable in the literature or
are based on small-sample studies, or when the resource constraint is
the hard limit. The choice of the procedure depends on the type of
effect size available as described below:

Types of Effect Sizes

Five types of effect sizes are relevant to the SPEED protocol. The
overview of their relationship is shown in Figure 4.2.

A reliable effect size is an effect size from a similar study that can be
taken to plan the new study. Such study should have a relatively large
sample size—at least according to the standard of the sub-field, e.g.,
[Abbott et al., 2019, Caine, 2016]. Alternatively, a reliable effect size
can be calculated by aggregating the results of multiple studies with a
meta-analysis, e.g., [Obukhova, 2021]. This effect size is used as input
for the a priori power analysis (Section 4.4.2).
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An unreliable effect size is also from a similar study, conducted with
small sample sizes. Online studies aside, HCI experiments use rel-
atively small sample sizes [Barkhuus and Rode, 2007, Hornbeek and
Law, 2007]. Effect sizes in small-sample studies are likely to be over-
estimated and sometimes even estimated in the wrong direction [Gel-
man and Carlin, 2014, Maxwell, 2004]. Overestimated effect sizes can
lead to significant findings even though the effect might not exist in
the population. The overestimation can be aggravated by the publi-
cation bias (Section 4.8.3). With an unreliable effect size, the SPEED
protocol suggests using BUCSS (Section 4.4.2).

An practical effect size stems from the researcher’s domain knowl-
edge and is estimated by assessing the practical significance. An effect
size has a practical significance when it is large enough for the finding
to be useful [Kirk, 1996]. Researchers are encouraged to subjectively
determine the level of practical significance and support this decision
with a sound argument—for example, by weighing the effect with the
cost and scalability of the tested intervention [Kirk, 1996, Dragicevic,
2016, Bakker et al., 2019]. Researchers may substitute the reliable ef-
fect size with a practical effect size for the a priori power analysis (Sec-
tion 4.4.2). The practical effect size is also relevant in planning under
resource constraints in sensitivity power analyses (Section 4.4.2).

When the resource or participant constraints is a dominant concern,
instead of planning for a certain level of statistical power, researcher
may aim to determine the minimum effect size that the experiment
could likely detect. This minimum effect size is compared to the other
types of effect size above to determine whether running the experi-
ment will likely be futile or not. This procedure is explained in sensi-
tivity power analysis (Section 4.4.2).

The smallest effect size of interest (SESOI) is used in sequential ex-
perimental design (Section 4.4.3). It is as threshold where researchers
may decide to stop the data collection before reaching the full sample
size when the study is unlikely to yield any statistically significant re-
sults. The choice of SESOI depends on the type of power analysis, as
described below.
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A priori Power Analysis

If there is an effect size from a previous study that use a relatively large
sample size (or from a meta-analysis, researchers can directly conduct
the a priori power analysis. Here, researchers choose a threshold of
statistical power (usually .8) and find the sample size that will likely
to yield the power exceed that threshold.

If the literature effect size is unavailable, researchers can still conduct
a priori power analysis with an expected effect size. In this case, re-
searchers should provide sufficient argument to support this decision
in their paper. It is advisable to err on the low side because studies
that can detect a small effect size will be able to detect the larger ones
[Murphy et al., 2014, p. 21].

A priori Power Analysis with BUCSS

As described in Section 4.4.2, effect sizes from small-sample studies
risk overestimating the population effect size, and studies that did not
achieve statistical significance are left unpublished due to publication
bias. Taylor and Muller [1996] created a mathematical model of both
problems, and Anderson et al. [2017] implemented this model in the
R package BUCSS [Anderson and Kelley, 2019]. We describe the intu-
ition behind this model below.

Consider a long sequence of replication studies. The sample size of
each study is planned based on the results of the previous one. When
a study yields a larger-than-expected effect size, the subsequent study
will use a smaller sample size to reduce the excess statistical power.
Eventually, smaller sample sizes will lead to an underpowered study,
which is left unpublished due to publication bias. Thus, the result of
this underpowered study will not be used to upward-correct the sam-
ple size of the following study. Eventually, one of the later studies
will yield a large effect size by chance, allowing the next study’s sam-
ple size to be increased, and the process repeats. Taylor and Muller
[1996]’s model encodes the censoring due to publication bias and the
upward-downward corrections in two parameters: ap and assurance:

ap represents how much study results are censored by publication
bias. ap = 0.05 represents the situation that all studies that yield
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p-value higher than 0.05 are left unpublished. ap = 1 means no pub-
lication bias.

Assurance represents the proportion of these hypothetical studies that
overestimate the population effect size. The assurance level of 0.5 rep-
resents a balance: half of the replications overestimate the effect size,
which is corrected by the other half, resulting in underestimations.
Higher assurance levels protect against overestimations.

What level of assurance should be used? Taylor and Muller [1996]
suggest a conservative assurance level of 0.95—which usually result
in a very high sample size. Anderson et al. [2017] conducted a simu-
lation study with unpaired ¢-tests, paired t-test, 3 x2 between-subjects
ANOVA, and 3 x4 mixed-model ANOVA. These simulated studies are
planned based on the original study that uses a sample size of 25.
The results indicate that setting assurance to 0.8 is sufficient for the
medium population effect size according to Cohen’s criteria. In prac-
tice, the population effect size is unknown. The available information
is the unreliable effect size and the sample size of the prior study.

Recommendation: Start with the assurance of 0.8. When BUCSS sug-
gests an affordable sample size and if the prior study has a very low
sample size, extraordinarily large effect size, or both, consider increas-
ing assurance liberally up to 0.95. When BUCSS suggests a sample
size that exceeds the available resources, we recommend lowering the
assurance cautiously because reducing assurance has a diminishing
effect on sample-size reduction. The lowest assurance level is 0.5—
which does not correct for any overestimation. For ap, we believe
that 0.05 is reasonable because the field of HCI neither enforces pre-
registration nor registered reports.

Sensitivity Power Analysis

When the sample size suggested by the a priori power analysis exceeds
the available resources, researcher can use the largest sample size they
can afford to determine the smallest effect size that they can detect.
This method is called sensitivity power analysis (Cohen [1988], p. 15;
Murphy et al. [2014], pp. 86-87; Lakens [2022], p. 14). Researchers
specify the largest affordable sample size and statistical power to ob-
tain the minimum effect size that is likely to be detectable. Then, re-
searchers compare this minimum effect size to the benchmark effect
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size (either unreliable, reliable, or practical effect size). When the min-
imum effect size is far smaller, researchers should reflect whether to
pursue the experiment with a risk of futility. If the minimum effect
size is acceptable, it could be used as the SESOI for the next step.

4.4.3 SED Plan

Monotonically increasing: Conservative option with a high probabili-

Spending function’s
shapes / ty of finding significant results at the end. This type of function is best
when researchers can afford recruiting full N.
T‘: § Constant: Neutral option with an equal probability of finding significant
<
E e / ——| results. This type of function is best when researchers have a high
2 _:E uncertainty about the expected effect size.
7% of sample size Monotonically decreasing: Aggressive option with a high probability
\ of finding significant results at the start. This type of function is best
when large differences are expected early on.
Spending function Shape & parameter Notes

- Supports only one-sided statistical tests
« Not parameterized
« Not used anymore

O’Brien- Fleming
1979

Pocock /
1977 » Requires equal spacing

Lan-DeMets Supports only one-sided statistical tests

1983 “a spending function”

P

Kim-DeMets
1987 “power family”

Extension of Lan-DeMets to support symmetric
and asymmetric two-sided boundaries

7k O

ol =0 <0
Hwang-Shih-DeCani / Generalization of Lan-DeMets and
1990 Kim-DeMets

v 0,033 (035, 1.5
Exponential \ One- or two-parameter function with
1987 greater flexibility

Table 4.3: Common spending functions for the probability of committing Type I error («)
[Pocock, 1977, O’Brien and Fleming, 1979, Lan and DeMets, 1983, Kim and DeMets, 1987,
Hwang et al., 1990, Anderson and Clark, 2009].

The SED plan includes information about the main hypothesis, statis-
tical procedures, interim analyses, and stopping criteria. Next to the
main hypothesis, there might also be hypotheses that are not answer-
ing the main research question which can be excluded from the SED
plan. For example, a nuisance variable such as the handedness of par-
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ticipants is included to ensure that it does not confound the results.
Researchers can set up the interim analyses with information about
the counterbalancing of the experiment, the sample size, the main hy-
pothesis, and statistical procedure.

Researchers decide the sample sizes at which interim analyses will
be conducted, i.e. information time 7. For example, with a total of
maximum 60 participants, suppose we decide to conduct four analy-
ses at information times 7 = %, %, %, and %. Three interim analyses
would be performed at 15, 30, and 45 participants. The final analysis
would then be performed at 60 participants. Positioning the analyses
must take the counterbalancing into account, e.g., interim analyses for
a 2 x 2 Latin square counterbalancing design need to occur at a sam-
ple size that is a multiple of 4. Box 1 summarizes considerations when

choosing the number of analyses.

Box 1: Considerations in choosing the number of analyses

There are several considerations to take into account when
choosing the number of analyses. First, it is crucial to perform
an (interim) analysis only at the point where the number of
participants reaches a fully counterbalanced unit. Second, con-
ducting a greater number of analyses reduces the nominal o
threshold for each analysis, consequently decreasing the over-
all likelihood of obtaining statistically significant results. Third,
conducting more analyses increases the potential cost savings
associated at each analysis.

It is important to note that there is no definitive or correct num-
ber of analyses; the optimal choice depends on the specific ex-
perimental setting. To give a general idea about the number
of analyses, Todd et al. [2001] recommend between 4 and 8 in-
terim analyses for practical considerations. Nonetheless, we en-
courage researchers to explore different number of analyses and
sample size intervals with their respective nominal « thresh-
olds, as outlined in Supplementary Materials Section 3 (S3).

\.

In Null Hypothesis Significance Testing, an « value of 0.05 is com-
monly used to establish the significance of an effect. While some re-
searchers have proposed to lower the a value to 0.005 Benjamin et al.
[2018], others have opposed it [Lakens et al., 2018]. However, re-
searchers can freely choose which ever « value is appropriate for their
field as SED maintains the overall a value constant across all analy-
ses. Due to the multiple analyses which are conducted throughout the
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Figure 4.3: Anderson and Clark [2009]’s exponential spending function at three different
input parameter settings with four analyses outputting the nominal o boundaries as signifi-
cance threshold at each analysis.

data collection, the overall o value is distributed to each of the anal-
yses with a spending function. Such a spending function distributes
a values over the planned analysis so that the overall Type I error
rate is kept at .05. Before Lan and DeMets [1983] introduced the con-
cept of spending functions in 1983, researchers used the procedures by
Pocock [1977] or O’Brien and Fleming [1979] to distribute the « value.
These two procedures require an equal spacing between the analyses,
making them less versatile in experiment settings. Today, researchers
can choose from many different parameterized spending functions.
Table 4.3 shows common spending functions and their characteristics.
See Box 2 for our recommendation on choosing a spending function.

Table 4.3 shows different spending functions and how their param-
eter setting affects the three possible types: constant, monotonically
increasing, and monotonically decreasing. A constant spending func-
tion is advantageous if the outcome uncertainty is high as it distributes
the o boundaries equally across each interim analysis. A monotoni-
cally decreasing spending function is advantageous if the p-value is
expected to be high during early stages of the experiment (e.g., Fig-
ure 43 v = 0.15). A monotonically increasing spending function
is advantageous if researchers expect significant results in the later
stages of the experiment, yielding a higher probability to conclude
with significant results compared to the other functions (e.g., Fig-
ure 4.3 v = 1.00).

After choosing a spending function, a SED plan looks like Table 4.4,
which uses an exponential spending function [Anderson and Clark,
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2009]. This table can be preregistered to establish the rigor of the study
for reviewers and authors (see Section 4.6 for more details).

Sample Size at z-Score Nominal «
Information Time
.
Interim Analysis #1 | 0.25 N +4.80  7.8125x 1077
Interim Analysis #2 | 0.50 N +3.02  1.2492 x 1073
Interim Analysis #3 | 0.75 N £2.22  0.0134
Final Analysis 1.00 N +1.81  0.0358

Table 4.4: SED plan using Anderson and Clark [2009]’s exponential spending function with

80% power and v = 1.00.
Table 4.4 includes a z-score—Also known as standard score.—next to

the nominal « value. The z-score represents the distance in standard
deviations of a measurement to the sample mean and is defined as:

=28 (4.1)

where z is the measurement, p is the sample mean, and o the sample
standard deviation. Test statistics such as ¢, F, or x? can be converted
into p-values which in return can be converted into z-scores. Comput-
ing the z-score directly has the benefit of including the direction of the
effect, i.e. whether it is positive or negative. As a p-value lacks this
information, researchers can add the sign (+ or -) onto the z-score cal-
culated from test statistics. For planning SED studies, it is beneficial
but not necessary to use the z-score along with o and p-values as the
sign is preserved and the readability increased for small p-values.
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Box 2: Choosing Sample Size Intervals and a Spending Func-
tion

When choosing a certain spending function, researchers need
to trade off the benefit of stopping early against the risk of
not finding significant results at the final sample size. At later
stages of the experiment with a larger sample size, the preci-
sion improves and it is more probable to get lower p-values pro-
vided the effect exists in the population. Choosing a monoton-
ically decreasing spending function (Table 4.3) has the benefit
of stopping early with a comparatively high probability. How-
ever, the risk that early p-values might be large due to inter-
participants variability, hence, preventing early stopping makes
it unlikely to find significant results later. Therefore, we do not
recommend monotonically decreasing spending functions, and
instead focus on constant and monotonically increasing func-
tions. Constant functions are advantageous if researchers have
no related work that could provide an idea about what the out-
come might look like. Monotonically increasing functions are
advantageous if researchers want to focus on finding significant
results in later stages of the experiment. Without additional in-
formation about the experiment outcome, we recommend us-
ing Anderson and Clark [2009]’s exponential spending function
with v = 1 for conservative experiments (Figure 4.3 light blue
plot).

4.4.4 Data Collection and Interim Analyses

After the SED plan is finished, researchers can start the data collection
that will have three possible outcomes: an early stop due to signifi-
cant results, an early stop due to small effect sizes, and a regular stop.
When the first interim analysis sample size is reached, researchers
conduct the analysis on the primary hypotheses. If the p-values for
each tested comparison is below the nominal o boundaries of the in-
terim analysis plan, researchers can stop the data collection and pro-
ceed with significant results. This early stop indicates that the main
effect of interest is much stronger than anticipated and researchers can
save further resources.

If at least one of the p-values is larger than the nominal oo boundary,
i.e. not statistically significant, it is possible that the real effect size
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is too small to be detected, and further data collection would be fu-
tile. To determine this situation, researchers proceed by calculating
the mean effect size (ES) and compare it to the SESOL. If the ES is much
smaller than the SESOI, researchers can choose to stop the data collec-
tion. This early stop indicates that the main effect of interest is much
smaller than anticipated and researchers will unlikely find significant
results even with the full sample size. In HCI, this could imply that
a novel interaction technique is not as good as predicted or that the
experiment is not set up well enough to capture its qualities.

If at least one p-value is larger than the nominal o boundary and the
ES is larger than the SESOI, researchers can proceed with the data col-
lection until the next interim analysis or until the final sample size is
reached. In the latter case, the experiment comes to a normal stop,
which is the case for experiments where the initial effect size was a
good estimate of the sample effect size.

SED does not prevent researchers from HARKing or reporting a
planned SED as a normal study. However, if researchers throw away
the SED plan and report the study as is, they risk obtaining an impre-
cise effect size, i.e. a wider 95% confidence interval, calling the results
into doubt. SED is compatible with preregistration which addresses
publication bias and HARKing [Cockburn et al., 2018]. We listed the
required information for preregistering a SED study in point 6 of the
checklist in Section 4.6.

4.4.5 Multiple Comparison Adjustment

If multiple hypotheses are tested at each interval, researchers should
adjust each nominal alpha to account for multiple comparisons, e.g.,
with the Bonferroni correction (Z; m is the number of hypotheses)
[Bretz et al., 2009, Jennison, 1999]. However, the Bonferroni correction
might be too conservative, especially because the nominal « is already
small. Instead of reducing « for all hypotheses to the same amount,
stepwise procedures such as the Benjamini-Hochberg correction [Ben-
jamini and Hochberg, 1995] would be more practical.
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4.4.6 Data Analysis and Result Adjustments

Once data collection is completed, the observed effect sizes and p-
values could be biased [Lakens, 2014a, Jennison, 1999]. Researchers
can choose to adjust p-values, mean differences, and confidence in-
tervals. Researchers can choose to adjust3 p-values, mean differences,
and confidence intervals. However, in the SED literature, there is no
consensus whether this adjustment is mandatory and a vital part of
SED. On the one hand, Dupont [1983] argues that the unadjusted p-
values* should be reported as it represents the strength of the evidence
based on the underlying data. Pocock [2005] argues for reporting
the unadjusted p-value for the sake of simplicity. On the other hand,
Proschan et al. [2006] argue for the adjustment because of the poten-
tial overestimation in the data because it was analyzed while being
collected. Below, we summarized the rationale for these adjustments
and provide a recommendation for reporting adjusted parameters in
Box 3. Mathematical details are provided in Appendix F.

Adjusting p-values

In fixed-sample design, a p-value is “the probability of obtaining an ef-
fect that is at least as extreme as the observed effect assuming that the null-
hypothesis is true” Proschan et al. [2006]. This definition needs to be
adapted to fit the monitored data collection during SED: The adjusted
p-value is “the probability of obtaining an effect that is at least as extreme
as the observed effect assuming that the null-hypothesis is true while not
observing a significant difference at earlier interim analyses.” Lakens
[2014a]. Hence, an adjusted p-value is the union of probabilities that
the z-score does not exceed the nominal o boundary at earlier interim
analyses and the probability of exceeding the boundary at the final
analysis.

*The adjustment discussed in this section is in the SED context. If multiple hy-
potheses were tested, additional adjustments for multiple tests need to be done sep-
arately.

*Also called observed p-values or nominal p-values in the literature.
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Adjusting the point and interval estimations

SED is mathematically modelled as a Brownian motion stochastic pro-
cess, which is parameterized by a drift parameter. The adjustment
of point estimates, e.g., mean differences, and interval estimates, e.g.,
confidence intervals, take this drift parameter into account.

Box 3: Reporting of adjusted parameters

As there exists no consensus among statisticians whether all re-
sults should be adjusted or not, we recommend the following.
Report both, the adjusted and unadjusted, p-values. This will
facilitate the comparison with the conventional o« = .05 [Lak-
ens, 2014a]. Adjusting the mean difference and its confidence
interval can make the results more conservative, i.e. the mean
difference will be closer to 0 and the confidence interval will be
wider [Proschan et al., 2006]. As there might be side-effects, e.g.,
the mean difference can be slightly outside the confidence in-
terval, during the adjustment, we recommend that researchers
always report the unadjusted mean and unadjusted confidence
interval. The adjusted mean and adjusted confidence interval
should also be reported with a caveat to readers that they are
more conservative. Nonetheless, we encourage researchers to
explore the latter adjustment results and include them as sup-
plementary materials. In general, the results should follow sta-
tistical reporting practices that include not only p-values but
also confidence intervals and effect sizes [Lakens, 2019].

Auxiliary analyses

Once data collection is finished, researchers can conduct auxiliary
analyses that provide further insights into the data. Because these
analyses take place only once at the end of the data collection, their
probability of Type I error remains the same as in fixed-sample de-
signs. Their results do not need to be adjusted. Further exploratory
analyses can also be run without additional restrictions.
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Package

4.4.7 R Template for Power Analysis and Sequential Experi-
mental Design

To the best of our knowledge, there is no comprehensive tool or code
template available covering the entire process to support researchers
in conducting SPEED experiments. However, there are some R pack-
ages available that allow researchers to plan and conduct SPEED ex-
periments. Nonetheless, Table 4.5 shows challenges we identified that
might prevent HCI researchers from conducting SPEED studies cor-
rectly using the respective packages.

Challenge

pwr
a priori & sensitivity PA

BUCSS
a priori PA for small-n

Specification and interpretation of the sample size parameter for within- and
mixed-participant designs.

(1) Specification of t.observed if non-t-statistic is reported.
(2) Specification of assurance parameter is ambiguous.

gsDesign Missing result adjustment capabilities.
SED planning

GroupSeq (1) GUI-based application

SED planning & adjustment (2) Missing code documentation

Table 4.5: Challenges for non-statisticians using relevant packages for SED.

Lakens [2014a] created a guide for Psychologists on how to plan a
SED study and adjust its results using pwr, the GUI of GroupsSegq,
and Microsoft Excel. His guide features multiple scenarios focusing
on between-subject designs. However, many studies in HCI are con-
ducted using within- or mixed-participants designs, thus, making the
guide less applicable to HCI. Additionally, researchers following Lak-
ens [2014a]’s guide rely on GUI parameter specification and output,
making the results less replicable and explorable. Therefore, we ar-
gue that current tools and guides do not adequately support plan-
ning, conducting, and analyzing SPEED studies according to the HCI-
tailored process we propose in Section 4.4.

Phelan et al. [2019] created a set of R templates for conducting
Bayesian analysis which were evaluated during a user study. Inspired
by Phelan et al. [2019], we used the following three design goals when
creating our R template in markdown format that enables researchers
to follow our process:
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DG1: Allow users to easily plan and conduct a SPEED study with sam-
ple size planning with no prior knowledge.

DG2: Communicate statistical parameter specification and interpreta-
tion of functions in use. This is particularly important for a HCI
audience, which comprises people with a range of expertise in
statistics.

DG3: Prioritize the particular needs of HCI researchers. The template
should support the analyses that are most relevant to HCI re-
searchers.

In the template, we briefly explain the concepts of power analysis,
SED, and result adjustment (DG1). For the functions, we describe
how they should be used (DG1) and how to specify certain param-
eters (DG2). The parameters required to change are marked with
“CHANGE ME” and an id linking them to their respective explana-
tion. We interpret the results of the function output and point out
what implications follow (DG2), for instance, stopping data collection
early. The sample code in the template features a within-participants
design that can be extended to a mixed-design (GD3). The simula-
tion study of Hofman et al. [2020] in Appendix G features a between-
participants study for completeness. Thus, we believe that our tem-
plate provides a vital starting basis for HCI researchers who aim to
conduct a SPEED study.

Figure 4.4 shows the structure of the R Markdown Notebook template,
along with the information researchers need to provide, the used R
packages, and our contributions.

Sample Size Planning

We use pwr [Champely, 2018] for a priori and sensitivity power anal-
ysis. We contacted the authors of the package to clarify the ambiguity
about specifying the input parameter n (the sample size) when plan-
ning with a within-participant factor. Interpreting this parameter in-
correctly would lead to a sample size that is significantly higher or
lower than necessary. For BUCSS [Anderson and Kelley, 2019], users
need to specify a value for the assurance. As this specification in-
troduces more uncertainty for the users, we provided a guide for re-
searchers on how to specify assurance in Section 4.4.2 and the tem-
plate.
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Figure 4.4: The structure of the code template with the four main parts. Inputs by the re-
searchers are highlighted in , R packages in red, and our contribution in . The
p-value adjustment uses formulas obtain from [Proschan et al., 2006].

Interim Analysis Plan

GroupSeq [Pahl, 2018] and gsDesign [Anderson, 2020] can both
be used to plan a SED study. GroupSeq depends on a GUI, so re-
searchers have to take screenshots in order to explore parameter set-
tings, preregister their study, and add the plan to the supplementary
materials. gsDesign includes a wider set of spending functions and
more complex adaptive trial designs. For example, gsDesign sup-
port planning SED studies with one-sided tests or uneven tails. Ad-
ditionally, gsDesign is well documented—something that is missing
for GroupSeg—which enables researchers to move to more complex
design more easily.

Result Adjustment

gsDesign does not include any functions to perform the result ad-
justment. GroupSeq supports the calculation of the drift parameter
6 (see Section E2 for details). Based on [Lakens, 2014a, Dupont, 1983,
Proschan et al., 2006], we implemented the remaining functions in R
to enable to automatic calculation of the adjustments.
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4.5 Demonstration

In Section 4.3, we outlined three use cases where SPEED would be
particular useful to address the challenges that researchers face when
planning the sample size. In this section we illustrate the value of
using SPEED for the large online study by Hofman et al. [2020] (use
case 1) and for a replication of a small-sample study (use case 3). For
the latter, since the data for Mathis et al. [2021]’s study is not publicly
available, we use instead Smart et al. [2020]’s study, which enables us
to explain the entire process including planning the sample size with
BUCSS based on a previous small-sample study. For use case 2 (stud-
ies with hard-to-access participants), the benefit of stopping early is
obvious and we do not go into a detailed example.

4.5.1 Large Online Studies

In the use case of Section 4.3.1, we assume that Hofman et al. [2020]
conduct an a priori power analysis that suggests a sample size of
1,700. We also assume that the authors learn from the pilot study that
roughly 30% of the participants are excluded as they fail the attention-
check task. Thus, the authors plan to recruit a maximum of 2,400
participants to obtain 1,700 valid samples. We plan to conduct two
interim analysis after 800 and 1350 valid data points. To create the
interim analysis plan, we use the exponential spending function with
v = 0.3 for a relatively constant trend. After recruiting 1,085 partic-
ipants, we have 800 valid responses, and have thus reached the first
interim analysis stop. All four p-values are smaller than the nominal
o, which allows us to stop the data collection and calculate the ad-
justed results.

This example shows how SPEED can help researchers plan an online
study with a larger sample size for to ensure data quality, yet stop
early if the effect is larger than expected. With SPEED, researchers can
address the challenge of recruiting additional participants without the
risk of spending unnecessary resources.



102 4 SPEED: a Flexible Protocol for Planning the Sample Size of HCI Experiments

Interim Analysis Plan & Results : Interim Analysis Plan

actual unadjusted p-values

N nominal N H11 Hi.2 H2.1 H2.2

Interim Analysis 1
Interim Analysis 2
Final Analysis

800 .0196 1,085 2.02E-7 2.28E-4 9.37E-33 8.59E-3
1,350 .0188 - - - - -
1,700 .0116 - - - - -

Effect Sizes & Adjusted Results sesor: 0.068

‘ Cohen’s d [95% CI]  adj. p-value’  adj. mean difference  adj. 95% CI

Hi.1 | 0.52[0.32,0.71] 2.02E-7 19.91 [10.67, 23.60]
H1.2 | 0.38[0.18, 0.59] 2.28E-4 14.92 [5.69, 18.61]

H2.1 1.27 [1.06,

1.47] 9.37E-33 58.44 [75.96, 88.88]

H2.2 | 0.27 [0.07, 0.48] 8.59E-3 11.44 [2.20, 15.13]

" Adjusted p-value can be compared with the conventional & = .05.

Figure 4.5: A demonstration of SPEED based on Hofman et al. [2020]’s study. The plan (on
a grey background) could be preregistered. The interim analysis is based on the exponential
spending function with v = 0.3 for a relatively constant trend. The data collection can stop
after Interim Analysis 1 as all p-values are statistically significant.

4.5.2 Replicating Small-sample Studies

We use SPEED to demonstrate the planning and analysis of a visualiza-
tion experiment that compares algorithms for generating color ramps
[Smart et al., 2020] (V. = 31). We chose this study because the sam-
ple size could have been informed by previous work [Correll et al.,
2018], and both papers have made their data publicly available. For
demonstration purposes, we assume that the maximum possible sam-
ple size is 40 participants, and resample their dataset. For the SED
parameters, we follow the recommendations in Section 4.4.2, Box 2,
and Box 3. Supplementary Material S1 provides reproducible R code
for resampling, planning, and analysis.

In this demonstration, we use only the K-MEANS condition, which is
their novel technique, and the LINEAR condition, which is the base-
line. Their experiment also uses three visualization types. Hence,
we analyze it with a 2x3 repeated-measure ANOVA before running
a post-hoc test for the hypothesis. The dependent variable is the er-
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ror in an identification task. To plan this experiment, we use a result
from [Correll et al., 2018] that compares continuous v.s. discrete color
ramps: t(23) = 4.09. Based on this input, BUCSS determines that the
sample size at 80% assurance level is 25. Since the study assigns ex-
perimental conditions in random order, any sample size can be consid-
ered balanced. Therefore, given the maximum sample size constraint
mentioned above, we plan SED at three equal intervals: 25, 33, and 40.
SESOI was also calculated based on N = 40. These pieces of informa-
tion, which could be preregistered, are shown in the grey-background
part of Figure 4.6.

At the first interim analysis (/V = 25, Figure 4.6a), the p-value is higher
than the nominal «. (In fact, the ANOVA does not find the effect of
the algorithm to be statistically significant either.) Since Cohen’s d is
still higher than the SESQOI, the data collection must continue. At the
second interim analysis (/V = 33, Figure 4.6b), the p-value is lower than
the nominal . Therefore, the data collection can stop and the adjusted
results are calculated (Figure 4.6¢). For comparison, we also calculated
the results as if this experiment had been run with a fixed-sample de-
sign (Figure 4.6d). In this example, using SPEED for this experiment
would have saved seven (18%) participants while yielding a similar
confidence interval estimate. Appendix G presents the results of run-
ning the same simulation 1,000 times, showing that SPEED reduces the
number of participants by 19% on average for this experiment.

4.6 Checklist for Authors and Reviewers

To encourage rigor and transparency in adopting the methods we pre-
sented in this paper, we propose the following checklist for authors.
Reviewers can also use this checklist to asses rigor and transparency
of the practice and constructively critique the work. If the publication
outlet supports multi-stage review, e.g., registered reports—where the
methods are reviewed prior to the data collection, the checklist in the
Planning section could be considered a reviewing criteria.

Planning

00 1. Select the primary hypotheses that are used for planning the sample
size. For clarity, we recommend formulating these hypotheses as
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Null hypothesis: There is no difference in error SESOI
between the K-MEANS and the LINEAR condition +0.07

l N nominal | p-value Cohen’s d Decision

Interim Analysis 1
Interim Analysis 2
Final Analysis

25  .0055 .0073467 0.24  Continue ®&)
33 .0174 .000096 0.30 StOp
40 .0271 - - -

SED decision rules: Stop when either:
« p-value < nominal o« — statistically significant

TOmnibus test also not statistically significant

: Planning information that can be preregistered

« Cohen’s d < SESOI  — futility

‘ N a p-value  Cohen’s d [95% CI]
Results (SED) 33 .05 .00720%"  0.30 [0.14, 0.46] ()
Results (Fixed-sample) 40 .05 .00032 0.26 [0.11, 0.41] ©)

" Adjusted p-value can be compared with the conventional a = .05. Unadjusted p-value and nominal « are in row B.

Figure 4.6: A demonstration of SPEED based on Smart et al. [2020]’s study. The plan (on a
grey background) could be preregistered. The interim results (A, B) enable an early stop.
The final result (C)—using seven participants fewer than in the original experiment—has a
similar confidence interval as the fixed-sample design (D).

null hypotheses. It is important to state whether each hypothesis
is two-tailed (e.g., “no difference between A and B”) or one-tailed
(e.g., “A is not higher than B”) because these choices influence
SED and BUCSS calculations and how the SESOI should be com-
pared with the interim effect sizes.

O 2. Justify the choices of power analysis method and effect size estimates. If

the results of previous studies from the literature are used as a ba-
sis, cite the specific source experiment(s)—because one paper may
contain multiple experiments. Provide relevant statistical values
from the literature in an appendix. If additional processing were
applied to these results, share the code. When no literature effect
sizes are available, explain how the effect sizes were estimated,
e.g., whether they were based on pilot studies or researchers” own
estimates. Based on these pieces of information, select an appro-
priate power analysis method (Section 4.4.2), and state which one
was used with the respective parameter settings. If ranges of pa-
rameters were explored [Wang et al., 2021], provide bounds in the
supplementary materials.
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O 3. Justify the choices of the full sample size (N) and intervals for the
interim analyses. Both IV and the intervals should yield balanced
data. For example, in a 2 x 2 Latin-square design, they should
be divisible by 4. Explicitly state whether NV was decided based
on an estimate of an upper-bound effect size or based on re-
searchers’ resource constraints. If researchers can afford higher
N than suggested by the power analysis, consider trying BUCSS
with a higher level of assurance. To determine the first interval
of the interim analysis, researchers can use a sample size from
similar small-sample studies or a local standard of the application
domain. The subsequent intervals can be spaced unevenly if jus-
tifiable by other practical constraints.

O 4. State the level of assurance for BUCSS and the spending function for
SED. See section 3 for a discussion on the characteristics of these
choices. We make general recommendations for HCI in Box 2.

O 5. If multiple hypotheses are used to plan SED, choose a method to adjust
p-values for multiple comparisons. Multiple-comparison adjustment
methods can be applied either to nominal « or the resulting p-
values. We recommend applying them to the p-values to allow the
nominal « to be traceable back to the SED parameters. Chen et al.
[2017] provide a summary of the methods, which can be helpful
for choosing and justifying them.

O 6. Preregister. Preregistration provides a record that a study is pre-
planned with SED instead of adding SED after data collection has
started. Ideally, the answers to all the points above should be pre-
registered. SED preregistration must include: (1) the primary hy-
potheses, (2) SESOI, (3) N and analysis intervals, and (4) the nom-
inal « for each interval. See Figure 4.6 for an example.

Data collection

O 7. Withhold the results from the interim analyses from the experimenters.
Knowing the exact results from the interim analysis may change
how the experimenter behaves in further data collection. To min-
imize this potential experimenter bias, a separate person could
run the interim analyses and let the experimenter know whether
to continue or stop the experiment [Lakens, 2014a]. The experi-
menter can, however, prepare the analysis code such that it only
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needs to be executed during the data collection. This could be
even more improved if the experimenter is not the same person
as the one who designed the experiment.

Statistical analysis

O 8. Record and provide the results of the interim analysis and decision
made at each interval. The interim results should be provided as
supplementary material to the publication. For readers’ conve-
nience, provide a short summary of decision rules in the vicinity
as shown in Figure 4.6.

O 9. Run other statistical analyses only after data collection has stopped.
SED controls Type I errors during the interim analyses only for
the primary hypotheses that are used in the planning. Running
other statistical analyses during interim analyses will increase the
probability of Type I error.

Reporting

00 10. Report the unadjusted and adjusted p-values The literature on SED
provides arguments both for and against adjusting the p-values
of the final analysis [Proschan et al., 2006, Pocock, 2005, Dupont,
1983]. We recommend reporting the adjusted p-values in pub-
lications because (1) it could be interpreted with respect to the
conventional o = .05, and (2) unadjusted p-values should have
been provided as the result of the last analysis in supplementary
material according to our recommendation above. If the authors
choose to use the unadjusted p-values in the publication, they
must clearly state the nominal a—which is lower than .05—as a
reference point.
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4.7 Limitations of SPEED

4.71 SED and Bayesian Analysis

We presented SED in the frequentist statistics paradigm—and in both
the null-hypothesis significant testing and estimation approaches.
SED experiments can be subjected to typical Bayesian analysis with-
out any changes, only the planning step requires extra work. For read-
ers interested in applying SED to Bayesian analysis, we suggest [Jen-
nison, 1999, Chapter 18] and the recent update by Schonbrodt et al.
[2017]. Future work should extend the R template to Bayesian anal-
ysis and planning. It would also be interesting to compare the char-
acteristics of frequentist SED v.s. Bayesian SED in a simulation study
based on data collected in the field of HCI.

4.7.2 Using SPEED with Ordinal and Categorical Dependent
Variables

Many measures collected by HCI experiments are ordinal, e.g., Likert-
style questions, or categorical, e.g., choosing the most preferred item.
If they are not used to plan the experiment, they can be analyzed af-
ter stopping data collection. To plan SED with categorical dependent
variables, we refer readers to [Jennison, 1999, Chapter 12].

Research and software packages for planning SED with ordinal de-
pendent variables are limited. Pocock [1977] presented a small simu-
lation with the Wilcoxon test. However, several works [Pocock, 1977,
Mehta et al.,, 1994, O’Brien and Fleming, 1987] point out that plan-
ning using a SED procedure with rank-tests may reduce statistical
power, i.e. it is more difficult to get statistical significance. Mehta et al.
[1994] present an algorithm using exact permutation tests to address
this problem. To the best of our knowledge, no software package yet
incorporates this algorithm nor addresses SED planning with ordinal
dependent variables. Another direction for future work is to create
usable user interfaces for resampling and permutation methods.
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4.8 Web application for exploring sample size de-
cisions with SPEED

The SPEED protocol makes several decisions on effect sizes and sam-
ple sizes explicit. This change creates an opportunity for software
to support users in interactively comparing how each decision in-
fluences the candidates for experimental designs. In this section, we
present the major decisions in terms of data and task abstractions and
describe the state of the existing software tools. We present a web ap-
plication SPEEDX that is designed to support experienced empirical
researchers who are new to the techniques in SPEED protocol. Last,
we evaluate the application with the Cognitive Dimensions of Nota-
tion framework.

4.8.1 Data Abstraction

The data and task abstractions enable us to compare existing visual-
ization techniques without discussing domain-specific details. We use
the What-Why-How framework [Brehmer and Munzner, 2013, Mun-
zner, 2015]. In the following, all items and attributes are quantitative
unless otherwise indicated. For the SPEED protocol, two data abstrac-
tions are of particular interest:

Sample size tables

An experimental design candidate is derived from counterbalancing
constraints, Type I error, and either an effect size (in a priori power
analyses) or a fixed level of statistical power (in sensitivity power
analyses). Each candidate is represented as an abstract data table con-
sisting of data items (rows) and attributes (columns). Each item is
a sample size. The first attribute (column) depends on the type of
power analysis: it is either statistical power levels (for a priori power
analysis), assurance levels (for BUCSS), or detectable effect sizes (for
sensitivity power analysis). The second attribute is categorical values
indicating whether a sample size is selected or not. The largest se-
lected sample size is the final sample size. The remaining selections
are interim analyses.
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The user may come up with multiple candidates for experimental
designs. They could have different effect size estimates or different
counterbalancing designs. Different effect size estimates yield differ-
ent values for the first attribute. Different counterbalancing designs
impose different constraints on the valid sample sizes—the items. For
example, a design with total random assignment can use any sam-
ple size, whereas a within-subjects experiment with two conditions
requires the sample sizes to be multiples of 2 to be fully counterbal-
anced. Therefore, two candidates may form a data table with different
lengths. For these reasons, each candidate design is represented as an
individual abstract data table; multiple tables could be used simulta-
neously. In theory, the sample sizes can be any positive integer; there-
fore, the abstract tables have enumerable infinite items. In practice,
resources for experimental design are always limited, yielding finite
tables.

4.8.2 Task Abstraction

Each task abstraction consists of an action and a target—which
can be thought of as a verb and a noun. Since the procedures in SPEED
are likely to be unfamiliar to the readers, we describe each task by
giving the abstract action first with the concrete targets and then
summarizing the action-target pairs at the end. While planning a
SPEED experiment, users have to perform the following two tasks.

T1: Selecting when to conduct interim analyses

Wang et al. [2021] previously present task abstractions for determin-
ing a single sample size from a priori power analysis (T3 and T4). We
expand on Wang et al. [2021]'s task abstractions to cover selecting
multiple sample sizes in sequential experimental design component of
SPEED.

A user starts with knowledge about their a maximum affordable sam-
ple size (smax). This number may be a precise number or a rough
range. Then, the user will locate the minimum acceptable sample
size (smin)—Wwhich is likely based on the convention of their field of
study. All lower sample sizes will not be considered.
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In an a priori power analysis, they will also locate s,: the smallest
sample size that has an acceptable statistical power—say, 0.8. If the
resources allows smax being higher than s,, the user will browse the
sample sizes within the range of interest, [Smin, Smax), Where smin < sp <
Smax- One or more sample sizes within this range will be annotated
as either interim analyses or final sample sizes. The final sample size
is likely to be higher than s,, but the interim analyzes can be any-
where within the range of interest. The sample sizes with the power
below s, allows for a possibility that the population effect size turns
out to be higher than anticipated. To make these choices, the users will
also consider the concave relationship between power and sample-
size: At low sample sizes, the power increases rapidly until passing
an inflection point. Then, the increments slow down until eventu-
ally plateau. Therefore, the browse action incorporate several sub-
tasks: The user will compare the difference in statistical power be-
tween two or more sample sizes and consider whether that power
differences worth the investment of their resources. These browse,
compare, and annotate actions generally proceed iteratively from
low to high sample sizes. The task abstraction for a priori power anal-
ysis above also applies to BUCSS because the relationship between
sample sizes and assurances exhibits the same characteristics as those
between sample sizes and power (Section 4.4.2).

When s, is unattainable due to resource limitations, the range of inter-
est becomes [Smin, Smax), Where smax < sp. If smax yields far too insuf-
ficient power, the SPEED protocol suggests changing to a sensitivity
power analysis. Here, the relationship between the sample size and
the effect size is a convex, monotonically decreasing function. There-
fore, the browse-compare-annotate iterations are likely to proceed
in the opposite direction: from high to low sample sizes. Addition-
ally, the user can also consider hypothetical gains of investing more
resources into the experiment. Such consideration could lead to in-
creasing their upper limit smax and restart the iterations for some or
all candidates.

Since the user may consider multiple experimental design candidates,
the compare actions above may be performed across candidates. Ad-
ditionally, when design candidates are generated with different effect
size estimates, the users may compare the overall trend between can-
didates to assess their differences in the rate of trade-off. These com-
parisons are likely to be limited to the sample sizes within the range
of interest. For a priori power analyses, candidates with higher over-
all slope are favorable because a small increment of the sample size
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yields higher power gain. In contrast, for sensitivity power analyses,
candidates with lower overall effect size values are favorable.

In summary, the task of selecting when to perform interim analyzes
can be abstracted into five abstract tasks: locate, browse, and
annotate values, compare features,and compare trends.

T2: Choosing a Spending Function Configuration

Users have to choose a spending function and its parameter to as-
sign the nominal alpha values to each interim analysis stops. Users
select a spending function by name and then discover the trend of the
spending function. Then, users compare the trend of spending func-
tions with different parameter settings to identify which parameter
best suits their expected results (Figure 4.3). SPEEDX includes a new
mapping algorithm (see Section 4.8.4) that allows users to select a trend
for the spending function rather than a parameter. A concrete exam-
ple is that a monotonically decreasing spending function would be
preferred when a large effect size is expected, which, in HCI, could be
the case if a new interaction technique or artifact presents a major leap
over current work.

4.8.3 Current Systems

Three GUI applications currently exist to support sequential experi-
mental design: GroupSeq [Pahl, 2018], gsDesignExplorer [Anderson,
2020], and RPACT [Wassmer and Pahlke, 2022]. gsDesignExplorer
and RPACT provide more advanced features beyond the SPEED pro-
tocol. We will discuss only the characteristics relevant to the tasks
identified in the previous section. Additionally, none of these applica-
tions incorporate a priori power analysis or sensitivity power analysis.

For T1, none of the application supports iterative browse-compare-
annotate actions. Instead, all three applications asks the user to
specify when to conduct interim analyses as fractions of the final sam-
ple size (e.g., 0.5 for half of the total sample size). Users must man-
ually consider counterbalancing constraints to avoid conducting in-
terim analyses when the sample is not fully counterbalanced.
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In GroupSeq and RPACT, users select a spending function and spec-
ify its parameter. The gsDesignExplorer includes an extra step where
users first need to select a spending function family before selecting
the function itself. In GroupSeq and gsDesignExplorer, the spending
function chart does not include the nominal alpha values, but only
shows z-scores. To review the nominal alpha values, the user has to
manually convert them with an external tool. Lakens [2014a] created
a detailed tutorial that outlines these steps with Microsoft Excel. Ex-
ploring different spending function configurations requires multiple
steps, and thus remains cumbersome (Task 2).

GroupSeq is a standalone application that is launched from the R con-
sole, whereas the gsDesignExplorer and RPACT are R shiny appli-
cations for the web. During the exploration process, GroupSeq uses
one window as input and for each calculation a new output window.
While some input parameters are available in the output window, e.g.,
the spending function, others are missing, e.g., the input parameter to
the spending function. This way it remains challenging to compare
different designs as the user needs to keep track of the parameters
manually. Due to the nature of being a web application, multiple ver-
sions of the gsDesignExplorer and RPACT can be opened side-by-side
to explore different design decisions. None of the application facili-
tate a direct trade-off comparison between several design alternatives
(Task 3).

Ultimately, gsDesignExplorer and RPACT were designed for an ex-
perienced user group that make use of more complex experimental
designs.

4.8.4 Interaction Design

The goal of SPEEDX is to facilitate the exploration and design of group-
sequential designs. The user interface consists of of four different pan-
els. Users use the inspector panel (A) to specify parameters such as
statistical power or the spending function configuration. They can
observe the power analysis result in (B) and set the sample size for
the interim analyses. (C) shows the spending function configuration
in detail and (D) summarizes all design alternatives for comparison.
We describe the user interface for specifying and comparing sequen-
tial design alternatives according to diverse criteria, e.g., maximum
sample size, analysis stops, and spending function configuration. We
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eoe M- < © O localhost:3000/experiment/1 9 ® b + 8,8

EXPERIMENT

Require a multipleof | 2 1 participants

Replications [ 2 E‘

Plan with: ‘

Effect Size

Maximum affordable sample si v
16 18
Sample Size

STATISTICAL CRITERIA  ~

Desired Statistical power () | 0.8 E
Statistical Significance criterion (a) | 0.05 |4

jed (@ One-sided

SPENDING FUNCTIONS  ~

2 1a Alobel 0.035
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[ Evenly strict across all analyses
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Figure 4.7: SPEEDX interface: (A) Users specify parameters about the experiment design, sta-
tistical criteria, and spending function in the inspector panel; (B) Users select when interim
analyses take place based on the power analysis result; (C) Users inspect the spending func-
tion configuration that assigns the nominal « to the interim analyses; and (D) Users save and
select design alternatives and variations. Instead of choosing a power analysis directly, users
are guided through a decision tree (left) that determines the appropriate power analysis.

continues to highlight the "How” element of the What-Why-How
framework [Brehmer and Munzner, 2013, Munzner, 2015] by using
the small-capital typeface to indicate VISUALIZATION IDIOMS.

Inspector Panel: Experiment Design

In (A-1), users can alter all parameters that pertain directly to the de-
sign of the experiment itself. Users need to specify two parameters
that are based on the counterbalancing design. The multiple which is
the number for which the counterbalancing is valid. The replications
which is the number of conditions a participant does back-to-back so
that the researchers can aggregate the measurements.
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The user also selects a power analysis to specify the maximum sam-
ple size and SESOIL. First, the user selects whether s/he wants to plan
with a maximum sample size directly or an estimated effect size. The
former selection shows the sensitivity power analysis where the user
species the maximum affordable sample size. When the user selects
“plan with estimated effect size”, the UI updates to show the a pri-
ori power analysis parameters. By selecting the checkbox for previous
small-sample experiments, users can switch between the conventional
a priori power analysis and BUCSS.

Inspector Panel: Statistical Criteria

Under the statistical criteria, users are able to specify the desired sta-
tistical power, the significance criterion (commonly .05), and the di-
rectionality of the test.

Inspector Panel: Spending Function Selector

Users can select the spending function configuration either by the
function’s behaviour or by manually specifying parameters (Fig-
ure 4.8-3). The interface presents the behaviour selection first as
this requires less experience with spending functions. With a verti-
cal slider, users are able to choose the overall shape of the function
based on the exponential spending function. This reduces the time
and effort to understand how setting the parameter would influence
the nominal alpha values at each interim analysis, thus, facilitating
the choice of a spending function configuration (Task 2). When users
select the latter option, they are able to choose a different spending
function and manually enter the input parameter. This is useful if the
user intends to replicate a pre-existing configuration. No matter how
the user chooses to change the design, any changes are immediately
reflected in the spending function chart on the right.

To enable users to choose the shape of the spending function directly,
we first calculate weights that approximate the desired shape before
we compute the spending functions with their parameter ranges. The
vertical slider ranges from stricter in earlier analysis (1) to stricter in
later analysis (-1), where 0 marks evenly strict across all analyses. The
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Risk factor = -1

Risk factor = 0 Risk factor = 1

Figure 4.9: The weight profile for the slider that enables users to select the shapes of the
spending function directly instead of specifying the parameter manually.

weights are calculated using the following sigmoid function:

1

1+ exp(—x x b) (42)

where z is information time at which the interim analysis takes place
rescaled to -10 and 10, and b is the strictness level from -1 to 1. Fig-
ure 4.9 shows the weight profile at three strictness levels.

After computing the weight profile, we compute the spending func-
tion at different parameter and multiply the nominal alphas with the
respective weight of the profile. Then, we minimize the differences
between all values to select the parameter for the shape that would fit
best.

Inspector Panel: Info

Users can give the design a name, adjust its color, and add a com-
ment. This comment can be used to capture design rationales when
exploring alternatives.

Power Analysis Chart

Users select when to conduct interim analyses (T1) on the Power Anal-
ysis Chart. We build upon the visualization in Touchstone 2 [Eisel-
mayer et al., 2019] as shown in Figure 4.10 (left): It is a line chart with
the sample size on the horizontal axis and the statistical power on the
vertical axis. Counterbalancing design information is used to FILTER
out the sample sizes that are not fully counterbalanced. Without fur-
ther modifications, this chart already supports the locate, browse,
and compare actions in T1, but only for single candidate.
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Figure 4.10: Left: The power chart from Touchstone2—adapted from the Figure 1 [Eisel-
mayer et al., 2019] with permission from the authors to match the current version of their

software. Right: SPEEDX power chart.

For multiple candidates, Touchstone2 SUPERIMPOSES multiple curves.
An active candidate is highlighted with a confident band calcu-
lated from a margin of effect sizes. On the active candidate, fully-
counterbalanced sample sizes are encoded in with point marks di-
rectly on the curve. The user selects the sample size by moving a knob
that is coordinated with a horizontal line that spans the entire chart.
Finally, an area with too low power is indicated by a red area mark on
the background.

Supporting T1 in the SPEED protocol is more difficult because the user
will select multiple sample sizes for each candidate. Furthermore, sev-
eral candidates may have identical curves overplotted at the same lo-
cation while having different sets of selected sample sizes.

The SPEEDX chart is shown in Figure 4.10 (right). The user switches
between candidates by selecting one of them in the Overview Table—
which will be described later. The active candidate is plotted with a
thicker line, and inactive candidates are plotted with reduced color
saturation. Since the users can express the uncertainty of the effect
sizes by creating multiple candidates, the confidence band is no longer
necessary and is removed. We also remove the point marks that indi-
cate fully-counterbalanced sample sizes. Instead, moving the mouse
cursor in this chart shows a crosshair that snaps to the nearest fully-
counterbalanced sample size of the active line and its corresponding
power values. The color of the cross hair is defaulted to the same as
the active line. But when the mouse cursor hovers on the sample size
that will yield low power, the crosshair changes to yellow to warn
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the user of a low power; this sample size may be used as an interim
analysis, but it should not be used as the final sample size. This in-
teraction technique replaces the red area mark in Touchstone2. These
design choices allow users to compare values and trends across
the curves that are not overplotted.

To facilitate the comparing the candidates with totally overplotted
curves, below the horizontal axis SPEEDX adds the sample size indi-
cator: rows of one-dimensional dot plot—one row per candidate ex-
perimental design. Each dot represents a sample size selected for
an interim analysis, and the rightmost dot of each row automatically
becomes the final sample size. The active candidate row has their
dots bigger than the others. The tracking line from the main chart
continues into the sample size indicator, and its horizontal position
is ALIGNED and SYNCHRONIZED. Hovering over each dot reveals a
tooltip showing the name of the design candidate. The sample size
indicator substitutes SUPERIMPOSITION with JUXTAPOSITION.

To annotate sample sizes, the user clicks anywhere on the power
chart to toggle between selected /unselected. The user can also click
on the sample size indicator area to toggle any sample sizes, including
those from the inactive candidates. Unlike in Touchstone2, SPEEDX
prohibits selecting the sample sizes that are not fully counterbalanced.
This design decision is necessary to constrain the selections to be
meaningful for the subsequent T2. Clicking on the sample sizes that
are not fully counterbalanced will result in a beep and an explanation
message in a tooltip.

The description above applies to the a priori power analysis mode. For
other modes, the vertical axis changes to the assurance for BUCSS, and
the detectable effect sizes for sensitivity power analyses. The visual-
izations and user interactions remain the same.

Spending Function Chart

The purpose of the Spending Function Chart (Figure 4.11) is to se-
lect and compare spending function configurations by comparing the
overall shape as well as the nominal alpha values at each analysis
(Task 2). The horizontal or x axis shows sample sizes at valid mul-
tiples which is the same as in the power analysis chart. The vertical or



4.8 Web application for exploring sample size decisions with SPEED 119
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Figure 4.11: The spending function configurations of different design alternatives are super-
imposed to make the facilitate their comparison.

J Controls Parameters «”  Interim Analysy Unavailable stop

Active design Unused possiple stop Used stop (due to N max)
Figure 4.12: The overview table facilitates the comparison of design alternatives. Addition-
ally, users can duplicate, delete, and hide designs.

y axis shows the range of nominal alpha values from 0 to the signifi-
cance criterion set in the inspector, conventionally .05.

The spending function chart shows the current active spending func-
tion with full opacity at the top, while others” opacity is reduced to
clearly distinguish the different functions (Task 3). Each function is
colored according to the design color. When the mouse is moved over
the visualization, a small pop-up window follows the cursor, indicat-
ing the current sample size as well as the nominal alpha value at the
sample size.

Overview Table

The purpose of the table is to give an overview across the designs and
let users identify how the alternatives differ (Figure 4.12, Task 3). Each
top-level row represents one design that unfolds to reveal variations
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that users can save during the exploration process. The whole row
consists of three sections: the controls for the design, the parameters
of the design, and the interim analysis stops.

The controls allow the user to hide a design which excludes it from
the two visualizations. Additionally, users can duplicate and delete a
design. By saving a variation, users create a snapshot of the current
state of the design to revisit at a later stage. Users can revert to any
variation.

The sub-table storing the information for the interim analyses uses the
sample sizes where at least one design has a planned interim analysis.
Each cell contains one of the following four codes:

a colored dot: this indicates that an interim analysis is planned
at the given sample size;

¢ a small grey dot: this indicates that no interim analysis is
planned but would be possible at the given sample size;

* a striped pattern: this indicates that an interim analysis is not
possible because it exceeds the maximum sample size of that
particular design; and

e an empty cell: this indicates that no interim analysis can be
planned at the sample size because it halides the multiple con-
straint.

4.8.5 System Architecture

SPEEDX is implemented as a web application using Next]S Typescript
and a relational database with Prisma.io. The statistics are computed
using R and served as an API server with R plumber.

4.8.6 Evaluation: Cognitive Dimensions of Notation

In this section, we evaluate the usability of SPEEDX and define de-
sign implications for future work by comparing it with the existing
tools listed in Section 4.8.3. For this purpose, we use the Cognitive Di-
mensions of Notation (CD) framework [Blackwell et al., 2001, Green
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and Blackwell, 1998], an evaluation framework used in HCI and the
information visualization community [Gori et al., 2020, Zong et al.,
2021, McNutt and Chugh, 2021, Sarma et al., 2021]. This framework
provides a vocabulary for assessing the cognitive impact of design de-
cisions.

A cognitive dimension analysis assumes a specific user group and
user activities. For the following analysis, we assume that the users
are knowledgable in typical experimental designs but are new to the
sequential experimental design and to the SPEED protocol. We believe
that this user profile describes many HCI researchers. However, we
would like to point out that GroupSeq, RPACT, and gsDesignExplorer
were probably not designed with this user group in mind. Therefore,
the analysis below is not against these tools. Instead, it highlights de-
sign characteristics that broadens the target user group.

As for the user activities, we use those described in the task analysis
(Section 4.8.2). In each of the subsections below, we recap each user ac-
tivity before describing the analysis of relevant cognitive dimensions.

We conducted this analysis with all 14 cognitive dimensions from the
CD framework, shown in Table 4.6. In seven cognitive dimensions,
SPEEDX is on par with the current software; in the remaining dimen-
sions SPEEDX outperforms them. Below, we discuss salient differ-
ences in seven dimensions.

Hidden Dependencies, Premature Commitment, and Progressive
Evaluation

The differences along the cognitive dimensions of Hidden Dependen-
cies, Premature Commitment, and Progressive Evaluation are apparent
when users alternate among counterbalancing design, T1 (power
analyses), and T2 (choosing a spending function).

If the experiment design process was straightforward, users would
first design counterbalancing, then predetermine the total sample size
(N), and then choose the points to conduct interim analyses (e.g.,
ny = 0.25N,ny = 0.5N,...). In actual practices, however, researchers
alternate between counterbalancing design and power analysis in sev-
eral iterations [Eiselmayer et al., 2019, Section 4]. Each iteration could
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No. Cognitive Dimension GroupSeq RPACT gsDesignExplorer SPEEDX
1  Viscosity N4
2 Visibility = = = =
3  Premature Commitment 4
4  Hidden Dependencies N4
5  Role-Expressiveness
6  Error-Proneness = = = =
7  Abstraction = = = =
8  Secondary Notation = = = =
9  Closeness of Mapping /4
10  Consistency =
11  Diffuseness =
12 Hard Mental Operations 4
13 Provisionality N4
14  Progressive Evaluation N4 4 4

Table 4.6: Comparison of GroupSeq [Pahl, 2018], RPACT [Wassmer and Pahlke, 2022], and
gsDesignExplorer [Anderson, 2020] with our SPEEDX using the Cognitive Dimensions of
Notation framework [Blackwell et al., 2001, Green and Blackwell, 1998]. Checkmarks indi-
cate an improvement over other applications, and equal signs indicate similar quality.

change the constraints the range of interest and the power levels in T1
and the nominal-as in T2.

Suppose a pilot study shows that an experiment is too long. One way
to address this problem is to remove an experimental condition. How-
ever, this removal could change the number of participants required
to keep the experiment fully counterbalanced. The removal could
also change the effect size in an a priori power analysis—which also
changes the minimum sample size syin. In both cases, the change
could influence the cost-benefit assessment of when to conduct in-
terim analyses. For example, if the original experiment requires at
least 40 participants, with the possible interim analyses every 10 par-
ticipants. A researcher may decide to conduct the first interim analysis
with 20 participants. Suppose that a revised design is fully counter-
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balanced at every three participants. The smaller cost for each incre-
ment (of 3 instead of 10) may induce the same researcher to conduct
the first interim analysis with a higher number of participants (e.g.,
27)—which is likely to yield a higher statistical power.

This example shows how upstream decisions in the counterbalancing
design could expand or limit possible choices in sequential experi-
mental design. Since either counterbalancing, power analysis, or both
could influence the choices, the dependencies are branching. Addi-
tionally, the chain of dependencies could be long (e.g., counterbalanc-
ing choice — eligible Ns — possible interim choices — cost-benefit
differences). When these branching and distant dependencies are hid-
den, the users are likely to hope for the best solution rather than thor-
oughly explore the possibilities [Green and Blackwell, 1998]. This is a
problem in the Hidden Dependencies cognitive dimension.

The three current software tools ask the user to determine the total
sample size (IN) and when to conduct interim analyses as the frac-
tions of V. This input method requires the user to manually apply the
constraints from counterbalancing to these choices. When the users
change their counterbalancing and wish to see how their changes af-
fect sequential experimental design outcomes, they need to manually
take notes or work in separate web browser windows, in which they
have to enter all parameters from scratch. These cumbersome inter-
actions aggravate the Hidden Dependencies problem. In SPEEDX, users
can see multiple counterbalancing designs simultaneously superim-
posed in the same Power Analysis Chart (Figure 4.10)—allowing the
user to adjust the parameters and visually compare how the changes
affect the outcomes. Such interaction design increases the visibility of
the dependencies.

In addition, Premature Commitment problems occur—requiring the
users to make decisions before providing necessary information. For
T1, the three current software tools require choosing N simultane-
ously with choosing when to conduct interim analyses. This require-
ment forces the users to categorize these points of analysis before
knowing how their choices could affect the spending functions. They
also need to specify all analysis points at once before seeing how the
nominal alphas are distributed. In contrast, SPEEDX shows all points
that are fully counterbalanced together with the power curve (Fig-
ure 4.10). From these points, the user selects the sample sizes that
they wish to perform for either type of analysis. The point with the
highest number of participants becomes the total sample size, and the
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other points become interim analyses. This interaction design elim-
inates the need for the user to specify and categorize each analysis
point upfront. Additionally, each modification updates the nominal
alpha chart (Figure 4.11)—giving feedback for the user for their next
decision iteration. This immediate feedback is an improvement in the
Progressive Evaluation cognitive dimension—which is essential for in-
experienced users and helpful for expert users [Green and Petre, 1996,
section 5.9].

To summarize, SPEEDX reveals the Hidden Dependencies among the pa-
rameters of three processes: counterbalancing, power analysis (T1),
and selecting the spending function (T2). SPEED also mitigates the Pre-
mature Commitments when selecting analysis stops, and let the users
Progressively Evaluate outcomes of their choices of the interim analy-
ses.

Closeness of Mapping and Hard Mental Operations

After selecting the points to perform interim analyses, researchers
choose a spending function and its parameter. In this step, the three
applications differ along two cognitive dimensions: Closeness of Map-
ping and Hard Mental Operations.

The spending function determines how the overall alpha (Type I error
rate) is distributed among the analyses as nominal alphas. Each nom-
inal alpha is lower than the overall alpha, but they do not have to be
the same across all analyses. For example, in experiments where the
cost for each participant is high, or when the anticipated effect size
is large, researchers may prefer a distribution that gives permissive
(higher) nominal alphas in early interim analyses. In contrast, for ex-
periments where the effect size is expected to be small, being more
permissive at higher sample sizes is more desirable to allow statistical
power to accrue.

How nominal alphas are distributed is determined by the family of
the spending function, its parameter, and the number and locations
of the interim analyses. As previously shown in Table 4.3, each fam-
ily has its own specific parameter range that distributes nominal al-
phas differently. For example, setting the parameter value to zero in
the Hwang-Shih-DeCani family yields the same level of nominal al-
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phas across all interim analyses, whereas in the exponential family
zero yields monotonically decreasing trends (early-permissive).

To explore the choices of spending functions, GroupSeq, RPACT, and
gsDesignExplorer require the users to know each family of spending
function, and how each parameter distributes nominal alphas. Acti-
vating this knowledge while considering other design concerns could
overload the users” working memory. This problem exemplifies the
Hard Mental Operations cognitive dimension. GroupSeq and gsDe-
signExplorer provide a field for the user to enter any number for the
parameter. RPACT is more helpful. After the user selected a func-
tion family, RPACT shows a slider for the parameter. The range of the
slider is limited to the valid values for the selected family. These meth-
ods to exactly specify the function family and its parameter are useful
when researchers wish to use the configurations established in prior
works. SPEEDX also provides the same method as RPACT. However,
to choose a spending function in for a new domain—such as experi-
ments in HCI—researchers should be able to focus on how the func-
tion behaves instead of how it is called or which parameter value is
needed.

Therefore, SPEEDX maps the continuum from early-permissive, flat,
and to late-permissive behavior into a single slider. SPEEDX shows
all spending function families and associated parameters that fit the
desired behavior. The users can then select the family and parame-
ter that are suitable to their experimental context. SPEEDX improves
the cognitive dimension of Closeness of Mapping by letting the users
choose their desired distribution type and get the immediate feedback
directly.

Provisionality and Viscosity

After exploring several design alternatives, researchers compare their
trade-offs to choose their final design. In this step, the three applica-
tions differ along two cognitive dimensions: Provisionality and Viscos-

ity.

Users can save several alternatives while creating sequential experi-
mental designs. However, researchers have to choose one design that
fits their experiment best based on parameters, properties, and char-
acteristics. For example, the user created four alternatives designs (A,
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B, C, D) that use two methods of planning the sample size. Two (A,
B) are using the sensitivity power analysis with a maximum sample
size of 36 participants, whereas the other two (C, D) use an a priori
power analysis that returns 30 participants. Additionally, designs A
and C have three analyses at 18, 24, and 36, whereas B and D have
only two analyses at 15 and 30 participants. Now, the user needs to
decide which of the four designs will be the design for the experiment.

To compare the four design alternatives, GroupSeq, RPACT, and gs-
DesignExplorer require the user to save all the parameter settings
manually for each design as neither of the applications allows users
to store temporary alternatives. This means that users need to com-
pare the parameter settings manually. Specifically, in this example,
users have to compare the maximum sample sizes, the sample sizes
for each analysis, and their associated nominal alpha values. Keep-
ing track and comparing many numbers individually is cumbersome
and error-prone. This problem exemplifies the lack of Provisionality
in the three applications, which is the lack of saving intermediate de-
signs for comparison. SPEEDX allows users to store different design
alternatives and snapshots that a user might encounter that could be
useful for the future. Users can switch between the different designs
at a moment’s notice and can compare the parameter settings either
superimposed in the visualizations or juxtaposed in the table.

The complete parameter settings must be updated if users want to re-
visit any of the previous alternatives. To revert the parameter settings,
say, change the power analysis and add the interim analysis stops,
users have to do many interface actions, thus, leading to a high Vis-
cosity. SPEEDX improves the Viscosity by including the intermediate
designs into the application.

In summary, SED improves upon GroupSeq, RPACT, and gsDesign-
Explorer in the dimensions mentioned above by allowing users to
explore and compare different sequential experimental designs itera-
tively. GroupSeq, RPACT, and gsDesignExplorer have a high Viscosity
and low Provisionality, making SPEEDX a valuable and suitable tool
for designing sequential experimental designs.
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4.9 Discussion

The goal of this work is to encourage researchers to use different types
of power analysis to plan their experiments and to give them more
freedom and expressiveness choosing appropriate sample sizes. This
section discusses the broader implications of adopting SPEED for HCI
experiments.

4.9.1 Encouraging explicit and nuanced conversations about
sample size

The SPEED protocol offers researchers four ways to be explicit about
their sample-size decisions. First, researchers’ choice of the power
analysis indicates their belief about the provenance of the effect size.
For example, consider three situations that HCI researchers usually
face when planning experiments: (1) when reliable effect sizes exist
in the literature, (2) when they exist but are from small-sample stud-
ies, and (3) when no effect sizes are available. The SPEED protocol
covers all three. In the first case, researchers can directly conduct an
a priori power analysis. In the second case, researchers use an a priori
power analysis with BUCSS. In the third case, researchers use their do-
main knowledge to come up with a minimum effect size that would be
practically significant [Kirk, 1996, Dragicevic, 2016] before proceeding
with an a priori power analysis.

Second, researchers can discuss how the resource constraints influ-
ence the intent of their study. Continuing from the example above,
suppose the calculated sample size is far beyond the available re-
sources. Without the SPEED protocol, researchers might abandon the
power analysis and revert to using a sample-size heuristic [Eiselmayer
et al., 2019, p. 4]. With the SPEED protocol, researchers can describe
how the sample size suggested by a priori power analysis exceeds their
resources and then conduct a sensitivity power analysis that deter-
mines the smallest effect size of interest (SESOI) that could be detected
with the limited sample size. If the difference between SESOI and the
expected effect size is reasonably small, researchers could decide to
proceed with their experiment. They can even preregister the plan as a
confirmatory analysis. Otherwise, if the difference is large, researchers
could also use this result as a justification for either (1) substituting
their experiments with alternative validation methods [Greenberg and
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Buxton, 2008] or (2) intentionally running a preregistered exploratory
experiment [Cockburn et al., 2018]. Should they pursue the latter, they
can use interval estimates to discuss uncertainty and nuances in their
results [Dragicevic, 2016, section 13.4.5].

Third, researchers can use their resources and the participant pool
more efficiently. For example, they can weigh the costs of using an
unnecessarily large sample size with the benefit of added statistical
power. The cost of excess sample size is high in several situations—
e.g., when the participant pool is limited or when participants’ time
is precious or expensive (Section 4.3.2). In such situations, judicious
use of participants is prudent and ethical. Aside from these situa-
tions, saving research resources is clearly advantageous. For exam-
ple, researchers can direct the resources spared to conducting internal
replication studies that could further strengthen their scientific claims.
Alternatively, they can use these resources to conduct experiments
that investigate further nuances and interaction effects. On the ben-
efit side, larger sample sizes give higher statistical power. However,
the relationship between sample size and statistical power is a concave
function: Initially, power increases quickly but eventually plateaus—
resulting in a diminishing return.

An a priori power analysis lets researchers choose the sample size only
once. If their effect size estimate is close to reality, they may choose
a close-to-optimal sample size. Otherwise, they may select a sample
size that is too small—rendering their entire experiment futile—or too
large—unnecessarily wasting the resources and the participant pool.
The sequential experimental design part of the SPEED protocol allows
researchers to split this decision into multiple interim points where
they can consider the effect size and uncertainty from the data col-
lected at each point thus far. This supports more informed decision-
making: If their estimate of the effect size is accurate and the cho-
sen sample size is near the optimal, they can continue the experi-
ment. However, if their estimate is far above the real effect size, the
SPEED protocol lets them decide to stop the experiment early and redi-
rect the remaining resources into other more promising experiments.
By contrast, if the real effect size is much larger than their estimate,
the researchers can stop the experiment early and save the resources.
These additional decision points are not p-hacking or HARKing—
Hypothesizing After the Results are Known—because each interim
analysis is tested with a lower nominal alpha than the overall Type
I Error. The difference between SPEED and HARKing is further dis-
cussed in the next subsection.
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Fourth, researchers can incorporate more domain knowledge and
judgment into the sample-size decision. This additional information is
captured in (1) the choices of when to run interim analyses and (2) the
shape of the spending function. For example, researchers may use the
local sample size standard [Caine, 2016] to run the first interim anal-
ysis and use the upper limit based on resource constraints as the full
sample size. As described in Section 4.8.6, if researchers are confident
that the effect size is likely to be large, they could allocate higher nom-
inal alphas in early interim analyses. These choices are made explicit
at the planning stage, and SPEED encourages researchers to describe
and justify them to increase transparency in research decisions.

As the field of HCI matures, empirical studies are likely to hone in on
nuances of interaction techniques and other phenomena. The focus on
these nuances are likely to have smaller effect sizes than earlier works.
The field of HCI is also increasingly working with more extreme par-
ticipant pools—that warrant judicious involvement. Careful experi-
mental designs and sample size decisions enabled by the SPEED pro-
tocol will enable individual researchers and the HCI field as a whole
to be more efficient.

4.9.2 Sequential experiment design is not HARKing

Although the SED component of SPEED (Section 4.4) may appear sim-
ilar to HARKing [Cockburn et al., 2018], it actually encourages re-
searchers to explicitly avoid HARKing. John et al. [2012] surveyed
2,155 researchers in Psychology with an incentive for truth telling
about ten HARKing methods. Two of these are relevant for SED:

¢ Collect extra data: Deciding whether to collect more data after
looking to see whether the results were significant (57% of the
participants in John et al. [2012]’s survey indicated that they had
personally done this); and

¢ Stop early: Stopping collecting data earlier than planned be-
cause one found the results that one had been looking for (19%).

The process we propose in this paper differs from these two practices
because (1) SED requires the full sample size to be specified at the
planning stage, and (2) the early stops are decided based on nominal
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alphas that are more stringent than the overall Type I error (lower than
.05).

Additionally, according to the endowment effect [Kahneman et al.,
1990], we speculate that researchers place a higher value on the data
they have collected than on an identical dataset that they have yet to
collect. Without the process we proposed, researchers make decisions
whether to commit to a malpractice of collecting extra data when they
already possess all data they initially planned (V). The temptation
to collect extra data at this point could be aggravated by the endow-
ment effect. On the other hand, researchers who use the process we
proposed are confronted with decisions at two earlier points: a sensi-
tivity analysis may have suggested that the limited sample size will be
inadequate to detect the effect (0 data points collected) or an interim
analysis may indicate that the effect is much smaller than anticipated
(n data points collected, where n < N). The decisions to terminate the
study early is likely to be less confounded with the endowment effect
because the remaining data has not been collected yet. The process we
propose indirectly mitigate the file drawer problem by preventing the
underpowered studies from being run (or fully run) in the first place.

However, SPEED is not a panacea. SPEED adds a scenario that a de-
cision to stop early may be alluring: When a SED study yields an
interim p-value between nominal alpha and .05, researchers may be
tempted to stop and treat the results as if it come from a fixed experi-
mental design (FED). A systematic solution for this SED-to-FED mal-
practice is a widespread expectation of preregistration from reviewers
and publication venues for controlled experiments [Cockburn et al.,
2018].

Nevertheless, SPEED provides a procedure to mitigate the conse-
quence of SED-to-FED malpractice. Converting a SED to a FED study
at an interim analysis overestimates effect size with underestimates
its uncertainty [Lakens, 2014a] (e.g., a larger mean difference with a
longer confidence interval). For subsequent groups of researchers,
they can use BUCSS to adjust the effect size to avoid planning an un-
derpowered follow-up studies.
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410 Conclusion

This paper presents SPEED, a protocol for helping HCI researchers
conduct experiments with an appropriate sample size, and thus
avoid statistically underpowered or overpowered experiments. Al-
though a priori power analysis is a well-established method, most
HCI researchers lack readily available effect sizes. Researchers may
also abandon a priori power analysis if the resulting sample size is
unattainable with their resources or limited participant pool. We ad-
dress these challenges with three main contributions.

First, we introduce the SPEED protocol that enables principled and
nuanced decision on the sample-size decisions. The SPEED protocol
has three main components: sensitivity power analysis, bias- and
uncertainty-corrected sample size (BUCSS), and sequential experi-
mental design (SED). Sensitivity power analysis lets researchers es-
timate the effect size that can be detected given specific resource and
participant constraints. BUCSS also lets researchers conduct an a pri-
ori power analysis that accounts for the small-sample studies common
in HCI experiments. SED lets researchers conduct controlled experi-
ments with interim analyses, thus letting them stop collecting data
early if the sample effect is much larger or weaker than expected. We
explain the benefits of the SPEED protocol with two examples drawn
from HCI studies.

Second, we provide R templates and a checklist for authors and re-
viewers to plan, conduct, report, and review experiments designed ac-
cording to the SPEED protocol. Throughout the paper, we offer specific
recommendations to help authors and provide a checklist containing
the aspects of a thorough procedure.

Third, we developed a web application, SPEEDX, to help researchers
who maybe new to sequential experimental design and SPEED. We
also the analyzed cognitive dimensions relevant to using SPEEDX, and
compare them to three existing software tools for planning sequential
experimental design. This analysis suggests that SPEEDX’s interaction
design can lower the barrier for accessing the SPEED.

As a cornerstone of the scientific method, controlled experiments have
contributed to establishing HCI as a scientific discipline. It is now
time to adopt state-of-the-art methods, such as SED and BUCSS, and
processes, such as preregistration, to enable the next generation of ad-
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vances in the field. We look forward to the adoption of these or sim-
ilar methods in the HCI community and to the development of tools
to support them.
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Conclusion

5.1 Contributions

Designing good experiments is challenging but crucial to the credi-
bility of the findings and subsequent research. Researchers encounter
this difficulty due to the limited availability of tools for non-experts
in statistics. Therefore, this thesis aims to assist researchers in the ex-
perimental design process by (1) providing tools that facilitate exper-
iment design and sample size planning, (2) gathering information on
the challenges and insights experienced by users of these tools, and
(3) presenting a protocol for making more flexible sample size deci-
sions. Each of the three projects concentrates on a vital aspect of the
experimental design process.

The first project, called Touchstone2 (Chapter 2), focuses on high-
lighting the decisions related to independent variables, blocking, and
counterbalancing. It allows researchers to examine trial tables of par-
ticipants. However, the support for determining the number of partic-
ipants is limited to simple power analysis and counterbalancing. The
second project, called Argus (Chapter 3), builds upon Touchstone2. The
work in Argus delves deeper into a priori power analysis and provides
a tool that assists researchers in selecting an appropriate sample size
while considering all the constraints identified in Touchstone2. Both
Touchstone2 and Argus operate under the assumption of a fixed sample
size for experiments. Continuing the work, SPEED and SPEEDX enable
researchers to employ more flexible sample sizes. These tools allow re-
searchers to plan the counterbalancing design using Touchstone2, esti-
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mate a maximum sample size using Argus, and determine the interim
analyses using SPEEDX. Together, these tools empower researchers to
design better experiments by providing them with a comprehensive
experimental design toolkit. The following is a list of each project,
their contributions, and how they address the research questions.

The article in Chapter 2, which discusses Touchstone2, presents four
contributions:

1. an empirical interview study that identifies the challenges that
researchers face during the experimental design process and
how they overcome these challenges (empirical contribution);

2. aweb application that enables researchers to examine and com-
pare design alternatives, thereby facilitating the evaluation of
trade-offs (artifact contribution);

3. a domain-specific language specifically designed for researchers
to describe and share their experimental designs (artifact contri-
bution); and

4. two evaluation studies that demonstrate the efficacy of Touch-
stone2 in supporting the design process (empirical contribution).

These four contributions address RESEARCH QUESTION 1: How can
researchers be supported when designing controlled experiments?
The article offers a comprehensive analysis of the challenges encoun-
tered by researchers in the field of HCI and other related fields during
the process of designing controlled experiments. This article has em-
pirical, artifact, and theoretical contributions.

Touchstone? incorporates an interactive power analysis chart and a
form that enables users to calculate Cohen’s f effect size using avail-
able data. We discovered that the visual depiction of the power curve
was beneficial for users, although understanding the effect size re-
mained a significant obstacle, and the input form was cumbersome.
Armed with this empirical understanding, we embarked on enhanc-
ing the power analysis procedure through the development of Argus.

The article in Chapter 3 about Argus includes four contributions:
1. a task analysis that focuses on conducting a priori power anal-

yses and examines the challenges that researchers face in this
process (artifact contribution);
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2. the development of a web application that enables researchers
to explore the various factors that contribute to sample size, sta-
tistical significance, and statistical power (artifact contribution);

3. a use case that illustrates how researchers can use Argus to plan
the sample size of their experiments based on previous work
(theoretical contribution); and

4. avalidation study that demonstrates the insights researchers can
gain during the power analysis process (empirical contribution).

These four contributions address RESEARCH QUESTION 2: How can
researchers be supported when conducting a priori power analyses to
inform the sample size? The article identifies specific challenges asso-
ciated with using a priori power analysis and provides an application
that allows researchers to explore a priori power analyses. This article
has artifact, theoretical, and empirical contributions.

Argqus enables users to compare two scenarios by overlaying differ-
ent charts and temporarily adjusting static input parameters using the
history view. Through this process, we discovered that visual explo-
ration, coupled with closed-loop feedback, enhances the exploration
of causal relationships between different sets of parameters. The inter-
action design of SPEEDX closely adheres to the principles and lessons
we learned from our work on Argus.

The article in Chapter 4 about SPEED and SPEEDX includes three con-
tributions:

1. a protocol that combines various methodologies, enabling re-
searchers to implement early stopping of data collection in ex-
periments (methodological contribution);

2. R templates, guidelines, and a checklist that assist researchers
in conducting and assessing the rigor of experiments (artifact
contribution); and

3. an application that enables researchers to plan experiments with
flexible sample sizes (artifact contribution).

These three contributions address RESEARCH QUESTION 3: How can
researchers in HCI utilize a more flexible approach to plan sample
sizes for controlled experiments? The article outlines a process that
incorporates various power analyses and sequential experimental de-
sign. It provides examples, guidelines, R templates, and an applica-
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tion to aid researchers in planning and conducting such experiments.
This article has theoretical and artifact contributions.

5.2 Discussion

This section explores the integration of each project within the broader
context of statistical trends and the potential future implications of this
research.

5.2.1 Multiverse Analyses

Multiverse analysis has emerged as a recent trend in research, aim-
ing to demonstrate the robustness of findings, increase transparency
regarding researcher degrees of freedom, and highlight potential al-
ternative conclusions [Steegen et al., 2016]. In their study, Steegen
et al. [2016] presented different multiverse analyses, each showcasing
the variation in analysis results based on different data processing ap-
proaches. Additionally, Dragicevic [2016] highlighted how sampling
errors can lead to diverse outcomes in seemingly similar multiverse
analyses. To facilitate multiverse analyses, Sarma et al. [2021] devel-
oped a tool called multiverse that utilizes a special markup lan-
guage, eliminating the need for custom code for each universe. This
tool streamlines the generation of extensive multiverse analyses but
also introduces new challenges, such as debugging code errors and
refining the multiverse to focus on meaningful analyses. Gu et al.
[2023] presented the MULTIVERSE DEBUGGER, which simplifies the
identification and resolution of issues within individual multiverses,
aiding users in running specific analyses effectively. Reporting multi-
verse analysis results presents its own challenges, prompting Dragice-
vic et al. [2019] to propose the concept of “explorable multiverse anal-
ysis reports.” These reports allow users to modify and manipulate
decisions throughout the analysis process, providing an interactive
environment to explore how these alterations influence the reported
results.

Recruiting an appropriate sample size is crucial to avoid sampling er-
rors and ensure reliable research findings. The decisions made by re-
searchers when determining the sample size can also be considered
within the framework of a multiverse. In the context of sample size
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planning, Touchstone2 incorporated an uncertainty band around the
power chart, visually representing the uncertainty associated with the
effect size. This feature allowed users to anticipate potential devia-
tions in the effect size, which could influence the choice of a smaller
or larger sample size. However, it’s worth noting that the uncertainty
band in Touchstone2 does not align perfectly with the concept of mul-
tiverse analysis since it doesn’t involve researchers making multiple
decisions. On the other hand, Argus provides users with the ability to
explore the uncertainty of the effect size by incorporating hidden con-
founds and visualizing simulated outcomes in a multiverse format.
This capability allows users to analyze and comprehend the relation-
ship between input parameters and the final sample size, increasing
confidence in their decision-making process. While both Argus and
Touchstone2 primarily focus on the planning phase of the experiment,
the concept of multiverse analysis introduced by Steegen et al. [2016]
could be applied to the collected data.

With SPEED, researchers are required to consider and prepare certain
aspects of the data analysis during the planning stage. SPEED en-
ables users to make informed decisions about stopping data collection
early if the observed effect size significantly deviates from the esti-
mated effect size. By implementing early stopping, the uncertainty in
the planned sample size is reduced, as researchers can confidently re-
cruit a larger number of participants, knowing that only the necessary
amount is required to achieve meaningful results. During the plan-
ning phase, researchers determine a spending function configuration
that establishes the stopping criteria for achieving statistical signifi-
cance at each interim analysis. However, even when the appropriate
stopping conditions are met, researchers retain the flexibility to decide
whether to halt data collection at an interim analysis. This flexibil-
ity in decision-making regarding data collection and stopping criteria
presents interesting parameters for the creation of a multiverse anal-
ysis, particularly if researchers choose to collect data up to the full
sample size.

All three projects primarily center around prevailing statistical prac-
tices in which researchers typically conduct and report a single anal-
ysis. However, SPEED, with its sequential experimental design ap-
proach, introduces additional parameters and decisions into the anal-
ysis process at an individual level. As for future work, it would be
worthwhile to explore how SPEED and SPEEDX, could be incorporated
into a multiverse analysis framework. Investigating the integration of
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Hypothesis testing Estimation

Frequentist p-value » MLE with CI
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B .
ayesian Bayes factor with HDI

Figure 5.1: This work focuses on hypothesis testing under the Fre-
quentist paradigm. Future work can extend each project to the other
types and methods for statistical inference. This figure is based on
[Kruschke and Liddell, 2018].

these tools within a multiverse analysis would provide insights into
the robustness and sensitivity of research findings.

Touchstone? and SPEED not only encourage researchers to engage
in discussions about experimental design and sample size decisions
within the research community but also directly in their own research
work. Touchstone2 offers a powerful declarative language that enables
researchers to represent experimental designs and regenerate trial ta-
bles using the Touchstone Engine. This feature enhances reproducibil-
ity by providing a means to recreate and verify experimental setups.
In the case of SPEED, it actively promotes engagement in the sample
size discussion by allowing researchers to adjust the sample size based
on observed results. This feature necessitates transparency regarding
the research plan and analysis, as researchers need to justify and com-
municate their decisions. Both projects contribute tools and resources
that serve as a foundation for future endeavors aimed at improving
transparency and reproducibility in research practices.

5.2.2 Types and Methods of Statistical Inference

Researchers can use four different approaches to assess their treat-
ment’s effectiveness. Frequentist and Bayesian statistics'are two types
of statistical inferences, while hypothesis testing and estimation are
two statistical inference methods. The matrix presented in Figure 5.1
illustrates the relationships between these different statistical prac-



5.2 Discussion

139

tices. In the context of this thesis, the focus lies specifically on Fre-
quentist statistics utilizing hypothesis testing.

Frequentist statistics (top row) are based on random sampling distri-
butions that represent different groups within the population. Hy-
pothesis testing (top left) allows researchers to make a binary deci-
sion regarding the effectiveness of a treatment. This decision is based
on whether the p-value is below a predetermined threshold (com-
monly .05). However, it is important to note that the p-value only
provides information about the presence or absence of treatment ef-
fectiveness, without indicating the extent of its effectiveness. To gain
a deeper understanding of treatment effectiveness within the Fre-
quentist framework, researchers can utilize estimation-based statistics
(top right quadrant) by employing a maximume-likelihood estimator
(MLE) along with a confidence interval (CI). The MLE yields a point
estimate that represents the most probable center of the data, while
the Cl indicates the level of uncertainty associated with this estimate.
However, the CI does not provide any information about the distribu-
tion itself, treating all values within the interval as equally probable
as the MLE, according to [Campbell, 2021].

Unlike Frequentist statistics, Bayesian approaches (bottom row) place
emphasis on the probability that a hypothesis is true. In Bayesian anal-
ysis, the Bayes factor is employed to quantify the strength of evidence
in favor of either the null or alternative hypothesis. Unlike p-values,
which can be challenging to interpret intuitively, the Bayes factor (bot-
tom left) offers a more straightforward interpretation. It represents
the ratio of the likelihoods between competing hypotheses. For exam-
ple, suppose a researcher’s prior is considered an unbiased estimate
of their long-term accuracy in selecting hypotheses. In this case, if the
Bayes factor is three, it would be interpreted as follows: if the alter-
native hypothesis is true, the researcher would be correct three times
as often compared to if the null hypothesis were assumed to be true.
Since the Bayes factor is a ratio between hypotheses, we can not in-
terpret it as a probability. The posterior distribution with the highest
density interval (bottom right) represents a probability distribution
over parameter values.

'Please note that Bayesian statistics refers to Bayesian analysis and not Bayesian
Experimental Design (BED) as mentioned in Section 4.2.1. BED is a set of decision-
making procedures allowing sample size decisions during data collection. Bayesian
analysis utilizes prior information that was available before the experiment to inform
the statistical analysis conducted after data collection.
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Within each of the statistical frameworks, researchers have two meth-
ods at their disposal to draw inferences: hypothesis testing and es-
timation. With hypothesis testing (left column), researchers strive to
reject a null hypothesis that assumes no treatment effect. When the
null hypothesis is rejected, researchers can draw conclusions based on
significant findings, typically indicated by a significance level such as
p < .05, suggesting that the treatment is effective. However, the mag-
nitude of the statistical measures, such as p-values or Bayes factors,
does not provide information about the extent of the treatment’s ef-
fectiveness. In other words, a smaller p-value does not imply a more
effective treatment. On the other hand, estimation-based statistics al-
low researchers to conclude their analysis with a range of plausible
values representing the potential effectiveness of the treatment.

The results of Bayesian approaches (bottom row) are often considered
more intuitive and easier to understand and interpret, although the
analysis process itself may be more challenging. In contrast, Frequen-
tist statistics (top row) have traditionally been the predominant choice
for statistical analysis and have remained popular. However, there
is a clear trend indicating the growing popularity and adoption of
Bayesian statistics in the field of Medicine [Hackenberger, 2019]. This
trend suggests that the field of HCI may also follow suit and embrace
Bayesian statistics in the future.

5.2.3 Possible Directions for Future Work

This work primarily focuses on Frequentist statistics within the hy-
pothesis testing paradigm (top left) which remains the dominant
method for statistical analysis in the field of HCI. In the following dis-
cussion, I will explore how each of the three papers fits within the
landscape of statistical methods. Touchstone2 (Chapter 2) uses a pri-
ori power analysis to suggest an appropriate sample size to the user
based on the anticipated effect size and the constraints related to coun-
terbalancing. Although it primarily operates within the framework of
hypothesis testing, Touchstone2 also includes effect sizes for reporting,
allowing researchers to incorporate Frequentist estimation (top right).
In the context of Bayesian statistics (bottom row), researchers com-
monly employ “sample size determination” (S5SD) to determine the
number of participants required for their study [Wang and Gelfand,
2002]. However, Touchstone2 does not currently support SSD as it
requires users to specify various simulation parameters. Neverthe-
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less, the aspect of designing counterbalancing remains applicable to
Bayesian statistics. Future work could focus on incorporating SSD
into the experimental design process of Touchstone2. Moreover, there is
potential for extending Touchstone2 by incorporating Bayesian Experi-
mental Design (BED), where the levels of independent variables are
informed by previous experiments [Chaloner and Verdinelli, 1995].
In this scenario, users could load or simulate a previous experiment
within the workspace to inform the design of a new experiment.
While the overall trade-off comparison design may be similar, users
would need to select BED parameters to compute a new experimental
design.

In (Chapter 3), Argus is introduced as a tool that enables users to ex-
plore the intricate relationship between parameters and confounding
factors within a priori power analysis. While the exploration of con-
founding factors remains a compelling aspect, the specific Bayesian
approach of SSD would not be directly applicable in this context.
However, it is worth noting that SSD in Bayesian analysis involves
an iterative exploration process where researchers experiment with
different sample size configurations and prior distributions to simu-
late multiple posterior distributions [Wang and Gelfand, 2002]. These
posterior distributions are then evaluated using performance criteria
to inform the specification of a new sample size configuration. This
would allow researchers to include the SSD exploration of confounds
mainly present in human participants, such as learning or fatigue ef-
fects. Future work might examine how a tool similar to Argus could
facilitate researchers’ Bayesian reasoning regarding the sample size.

In SPEED (Chapter 4), researchers compare the p-values of the main
hypotheses obtained during an interim analysis with the precom-
puted nominal alpha value. This approach is compatible with
estimation-based statistics under the Frequentist paradigm (top right).
Hack et al. [2022] created the R package AGSDest, which enables
users to calculate the stopping criteria and adjustment for estimation-
based statistics, such as effect sizes and confidence intervals. On the
other hand, for Bayesian statistics (bottom row), Moerbeek [2021] cre-
ated a protocol similar to SPEED that uses Bayesian updating. In this
protocol, researchers employ the Bayes factor as the stopping criterion
at each interim analysis. However, if the Bayes factor fails to exceed
the support threshold for either the null hypothesis (Hy) or alternative
hypothesis (H;) before reaching the maximum sample size, the results
remain inconclusive. Only when the Bayes factor exceeds either sup-
port threshold can researchers report the results, either as hypothesis
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testing (bottom left) or estimation-based (bottom right). Future work
could explore the extension of SPEEDX to incorporate the use of Bayes
factors as a decision criterion.

All three projects have a primary focus on hypothesis testing within
the Frequentist paradigm, which is the commonly used statistical
analysis practice in the field of HCIL. These projects serve as important
foundations for supporting researchers in the selection of appropriate
sample sizes and also pave the way for the integration of estimation-
based and Bayesian statistics. Opportunities for future research in-
clude assisting users in determining sample sizes during experiment
design, gaining a deeper understanding of the complex relationships
involved in planning sample sizes using alternative methods, and ex-
panding flexible sample size planning to accommodate other statisti-
cal procedures as they gain popularity.

Within the field of HCI, several methodologies share similarities with
or incorporate elements from controlled experiments. For example,
in the study conducted by Koch et al. [2020] a structured observa-
tion was employed, which can be considered a quasi-experimental
approach. Similar to controlled experiments, conditions were manip-
ulated; however, in this case, both quantitative and qualitative data
were collected. This approach enhances the ecological validity of the
findings, but does not enable causal inferences. The task employed
in these methodologies is characterized by a higher degree of real-
ism and less control compared to traditional experiments, resulting in
reduced generalizability of the findings. While these methodologies
share some similarities with controlled experiments, it is important to
note that the focus of this thesis is specifically on unaltered controlled
experiments. The tools developed to aid in experiment design have
the potential to be applicable to other closely related research meth-
ods within the field.

5.3 Closing Remarks

This thesis presents research on supporting researchers during the ex-
perimental design process and introduces several tools and artifacts.
The research presented in this thesis primarily concentrates on sup-
porting researchers in the field of HCI, but it also has broader applica-
tions. The thesis encompasses three projects, each addressing different
aspects of the experimental design process:
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e Touchstone2 (Chapter 2) focuses on assisting researchers with the
design of counterbalancing, allowing them to determine how ex-
perimental conditions are allocated to participants.

e Argus (Chapter 3) aims to facilitate sample size planning
through the utilization of a priori power analysis.

e SPEED and SPEEDX (Chapter 4) provide researchers with the
ability to make more flexible decisions regarding sample size.

In conclusion, this thesis makes valuable contributions in the form
of artifacts, empirical findings, and methodological advancements to
the toolbox of quantitative methods used by researchers. By focusing
on controlled experiments, which continue to be a crucial method for
collecting empirical evidence, this work holds significant relevance for
future research in the field.
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Appendix A

Differences in standardized
effect sizes formulation

For a between-subjects design, we first calculate mean ()/;, M3) and
standard deviation (s1, s2) for each group. The simple effect size is
the difference between the means, and the standardizer is an average
of the standard deviations weighed by the sample size of each group
(Nz).

d N1 1 S + N2 1)
- Sp P - N1+N2 2

Suppose, however, that we block by handedness i.e. separating par-
ticipants into left- and right-handed before randomly assigning each
group to the two conditions. The standardizer requires scaling s, with
a factor that excludes the between-block variance sy,:

d=—Ma=ML 2 — Ny (Mg — Myy) + Nra(Mga — M)

[1_o2/42”
spy/1—sp/s3

For a within-subjects design, the change happens at the simple effect
size. The differences between the two conditions are calculated indi-
vidually for each participant before being averaged to be the simple
effect size (Mgifr). The standardizer (s,y) is the average of the standard
deviation of the two conditions.

d — Mai _ . /sits)
= ;s Sav = 5
Sav
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Appendix B

Propagation Algorithm

procedure PROPAGATECHANGE(nodes n, difference d)
C < CHILDRENOF(n)
Cy + UNLOCKEDNODES(C)
force C, do > Top-down propagation
c—dx|IC]/Cu]
end for
UPDATE(n)
end procedure
procedure UPDATE(node n)
Upast < n.value
C + CHILDRENOE(n)
n.walue < (3 .o cvalue)/ ||C|
p < PARENTOF(n)
if ISUNLOCKED(p) then

UPDATE(p) > Bottom-up update
else > If the parent is locked, ...
d < n.value — vpast
for s € SIBLINGS(n) do > ...distribute to siblings
PROPAGATECHANGE(S, —d)
end for
end if

end procedure
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Appendix C

Computation Architecture

Typical Shiny applications depend upon a reactive programming
model: A change of an input control in the web browser is sent to
R for calculation, and the results are returned to update the visualiza-
tion. However, each user interaction in Argus can potentially trigger
a time-consuming computation that could render the user interface
unresponsive. Argus thus only uses Shiny to provide direct commu-
nication between R and JavaScript [Cheng, 2018]. R returns compu-
tational results to JavaScript asynchronously, which ensures that the
interface remains responsive. Figure C.1 shows a sample scenario:
After receiving input A, the simulator computes a preview (Results
Aj_30) and sends it back to JavaScript to be visualized. Subsequent
results are sent back to JavaScript until the computation is complete.
Suppose the user triggers Input B while the previous simulation is still
running. Argus calculates the preview results (B;_30) and pushes the
updates to the user interface. Remaining calculations of parameter set
A are calculated in parallel on a separate worker process and gradu-
ally sent back to the JavaScript side for storage. When the user revisits
an earlier history point, previously stored output immediately shows
results without requiring additional computation, which makes the
history view fully responsive.
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Figure C.1: A sequence diagram shows how Argus progressively re-
ceives and displays simulation results for a responsive user interface.
Grey lines represent the results that are not shown on screen but stored
for use when the user navigates back through the history.
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Think-aloud study

To validate Arqus, we conducted an observational study that cap-
tures participants” exploration process and insights on power analy-
sis. We focused on the following research question: what insights can
researchers gain from being able to interactively explore the impact
of design choices (e.g., number of replication, number of participants,
counterbalancing) for their experiments.

D.1 Method

We used a think-aloud protocol where participants voice their obser-
vations and reasoning [Lewis, 1982], and then performed a qualita-
tive analysis of the results with affinity diagramming. Our analysis
focused on insights that participants gained [Saraiya et al., 2005]. The
study design and the analysis plan are preregistered at [click here for
an anonymized URL on osf.io], and were conducted as such—unless
stated otherwise below.

D.1.1 Participants

We recruited nine male participants from four different research labs,
in four different countries, including junior (Ph.D. candidates) and se-
nior researchers. Note that the types of insights that each participant


https://osf.io/2nh4v/?view_only=2207553a2ec94eaa8eeba6f3b9d11e63
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might gain from using Argus depends on their prior experience with
experiment design and a priori power analysis, and may not corre-
late directly with their academic level. However, researchers trained
by the same institution may share the same experiment design phi-
losophy. We interviewed each participant about their prior experi-
ence with planning, conducting, and analyzing experiment data, and
classified them as novice (P;y) or experienced (P;z). For the latter
group, researchers have several years of experience with controlled
experiments in the field of HCI and/or VIS. Three participants (2 ex-
perienced, 1 novice) participated locally and the rest participated re-
motely. Each participant received the equivalent of a 30 EUR gift card.

Expertise Academic Level Country

P1e Experienced Senior Scientist FR Lab1
P2e Experienced Senior Scientist FR Labt

P3n  Novice Ph.D. Student FR Lab1

P4e Experienced Post-doc DK Lab2 (remote)
P5e Experienced Ph.D. Student DE Lab3 (remote)
P6n Novice Ph.D. Student DK Lab2 (remote)
P7n  Novice Ph.D. Student DK Lab2 (remote)
P8n  Novice Ph.D. Student CH Lab4

P9n  Novice Post-doc FR Lab1l (remote)

Table D.1: Background information of the participants.

D.1.2 Apparatus

We used an earlier version of Argus that did not include the whole-
experiment practice effect in the Confound sliders. Local participants
used Argus installed on a Macbook Pro (15-inch, 2.5GHz, MacOS
10.14), with QuickTime to record their screens. Remote participants
accessed Argus via Shinyapps.io, with Skype for their interviews and
screen recordings.

D.1.3 Procedure

Training: After the participants gave an informed consent, they
watched a video provided in the supplemental material. The video
provides a short refresher on experiment design and statistics and
gives an overview of Argus. During the video, two prompts encourage
participants to pause and try out interactions with Argus. Participants
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can then freely try adjusting the parameters in a dummy experiment
setting. Participants are encouraged to ask questions or seek clarifica-
tions. Prior to the task, we asked participants to ensure that they were
able to use and felt comfortable using Argus.

Testing: The participants were asked to determine the sample size for
a Fitts’s law experiment similar to Douglas et al. [1999]. The exper-
iment compares two devices (a touchpad and a joystick) at three in-
dices of difficulties (3, 5, and 7). To simulate prior domain knowledge
for estimating effect sizes, each participant received an information
package (pp. 7-11 of the preregistration) printed on paper:

1. A summary of Douglas et al. [1999]'s study with the overall
means and SD of the movement time for each device. To sim-
ulate the prior knowledge about confounding variables, we also
indicate that there was a mild learning effect. To simulate con-
straints in experiment planning, the description indicated that
participants were tired at the end of the original experiment.

2. Excerpts from a trial table, with three Latin-square counterbal-
ancing strategies: (1) Douglas et al. [1999]s original design:
blocked by the device variable; (2) blocked by the device vari-
able and serial-order where all trials with the same device are
performed back-to-back; and (3) serial-order by device without
blocking.

Before starting to use Argus, participants can ask questions about these
materials, but may not ask questions during the session.

The main task is to explore the parameters and find a realistic sam-
ple size given the resource constraints typical of experiments they
have previously conducted. We also ask them to propose two other
variants of the experiment design that would reduce the overall num-
ber of trials, given the participant fatigue indicated in the information
package. We regularly remind participants to verbally describe their
actions and to ‘think aloud’.

Post-task questionnaire and interview: Participants rate their experi-
ence and the insights they gained during the study on a 5-point Likert-
style questionnaire. We then interview them about the process and
probed for further insights they gained about power analysis.
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D.1.4 Data Collection and Analysis

We video-recorded the screen, logged the interaction steps, recorded
audio, and took field notes. Two of the co-authors used the field notes
to guide a partial transcription for points that the participants voiced,
including observations and insights. The transcriptions were coded
with a top-down coding scheme based on the typology of data models
[Choi et al., 2019]. Three of the co-authors performed a bottom-up the-
matic analysis together using the affinity diagram method [Holtzblatt
and Beyer, 2016].

In addition to the preregistered analysis, we also extract how the
users move from clicking on one input control to another and cal-
culated first-order transition probabilities. Although the transition
probabilities did not capture how the users attend to views that does
not require clicking—e.g., Pairwise-difference view and Power Trade-off
view—they can indicate how the users explore the parameter space.

D.2 Results

This section describes our observations of the participants’ interac-
tions with Argus and the insights they, and we gained. We will use
“users” to refer to the participants in our study to avoid confusion
with the “number of participants” term in Argus.

Overall, the majority of the users reported that they have gained new
insights about experiment design (Figure D.1): “the preview is very use-
ful to understand the confound effects.” (P9n). P7n, P8n were not familiar
with carry-over effect and practice effect but they expressed their un-
derstanding of the difference between these effects when they saw the
previews. Five users applied their experience in conducting experi-
ment to consider potential confounds. For example, P8y said “adding
more replications can yield higher power but participants may be tired [so] I
need to increase the fatigue.” after increased the number of replications.
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| was able to understand the Ul. =

| learned new concepts in experiment design = -
| gained new understandings about concepts in experiment design = -
| gained insights in designing my own experiment = -
| found it easy to compare different scenarios = e
1 ] 1 ] 1 ] 1 ] 1 ]
Neutral 0%  25%  50%  75%  100%
Strongly disagree - - Strongly agree % of responses

Figure D.1: Result of Study Questionnaire.

D.2.1 Causal Inference about Parameter Relationships

Based on the interview and screen recording video, we coded users’
expression of causality (e.g., changing X affect Y) between power anal-
ysis parameters. The results is shown in Table D.2. The most frequent
insights connect the number of replications and the number of partic-
ipants to the power (Table D.2 row A and B): “The power is very high
now. I am going to tweak replications and participants to see how power is
going to change [...] reduce the number of participants, power drops down. It
makes sense” (P4g). Participants also interpret the characteristics of the
curve in Power Trade-off view: “The power get stabled after a certain num-
ber of participants. The current number of participant is a bit too much. We
can reduce the number” (P5g). These results are within our expectation
because the Power Trade-off view directly shows this relationship.

From To Count Participants
A # replications power 6  P3n, P5g, P6n, P7n, P8n, PON
B # participants power 5  P1g, P3n, P4, P8, PON
C expected means power 2 P1g, P2
D fatigue effect power 2 P7n, POn
E experiment design power 2 P4g P8y
F expected means conf. interval 2 P2g, P5e
G experiment design fatigue effect 2 P3n, P5e
H # replications fatigue effect 1 P6n
| practice effect power 1 P8n

Table D.2: Causality insights that the participants made, based on the
coding of the interview data and screen recording video.

According to the transition probabilities, the users switches between
manipulating the group-means and the grand-mean during their ex-
ploration (Figure D.2, A). This result demonstrates the usefulness of
these controls on top of the normal bar charts. The causal link be-
tween the expected mean to power and to the confidence intervals
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to

from "G F C P d CBNrNpPw H
Expected [ Individual bar

averages | Group/grand means

Fatigue
Expected Carry-over
confounds Practice B @
L P. differences

. Counterbalancing
Experiment L
. No. of replications
design .
| No. of participants ©
Pairwise difference
History

Transition probability: _ | |

0.16 0.12 0.08 0.04

Figure D.2: Average transition probabilities among the input controls,
averaged across participants. Three groups of controls (A-C) tends to
be more frequently used together than others.

in the Pairwise-difference view were expressed by two users each (Ta-
ble D.2 row C and F). For example, P1g said “now I am going to reduce
power [...] alot” after dragging two group-means close to each other.

The confound sliders had frequent transitions among themselves (Fig-
ure D.2, B), indicating that confounding effects were explored itera-
tively together by the users. Even though the carry-over effect was
not mentioned on the information sheet, P9y felt it was necessary to
consider it because “there should be some [carry-over] effect between the
first condition and the rests.”

The exceptionally high transition probability from the practice effect
slider to itself indicates that the users were more engaged in this effect
more than others. This is opposite to Table D.2 (row I) that only P8y
links the practice effect to the power causally. We re-watch the inter-
action videos and found the reason of this contradiction. The users
adjusts the confound sliders with an expectation to see the practice
effect’s influence. However, because of the initial value of the coun-
terbalancing design (Latin Square & no serialization as used by Dou-
glas et al. [1999]) and the number of replications (1 replication) does
not allow the practice effect to manifest. In summary, the results sug-
gests that when the causal link between the parameter and the power
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is moderated by the choices of the experiment design parameters, it
could be more difficult for the users to make a set of parameters that
can demonstrate the connection.

D.2.2 The Use of the History view

Five users tweaked expected confounds and observe how the power
of adjacent nodes in the History view gradually changes. Four users
repeatedly used the hover function to preview the difference. Two ex-
pert users use the branching to explore multiple strands of parameter
configurations. These behaviors show that the History view success-
fully facilitates the exploration of statistical power.
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Appendix E

A priori power analysis
practices at CHI

Caine [2016] conducted a systematic literature survey on sample sizes
at CHI, and found that the median sample size is 18 with 50% of stud-
ies reporting fewer than 18 participants. To complement Caine’s work,
we conducted a literature review to investigate the a priori power anal-
ysis practices at CHI between 2016 and 2020.

E.1 Method

We used CERMINE [Tkaczyk et al., 2015] to extract the content of all
papers and filtered them for “experiment” and “power analys”!. For
the resulting papers, we manually checked if the authors were using
an a priori power analysis to plan the sample size for their experiment.
Furthermore, we recorded how the actual sample size differed from
the planned one. We identified four different categories of experi-
ments: lab, online, crowdsourcing, and non-human samples. The lat-
ter category included, for example, online advertisements as samples.
A total of six papers did not conduct an a priori power analysis, but a
post-hoc power analysis. We excluded those results from the analysis.

To include both singular and plural form.



160 E A priori power analysis practices at CHI

E.2 Results and Discussion

CHI 2015 2016 2017 2018 2019 2020

Full papers using experiment 315 369 391 464 474 507

Used power analysis to plan sample size 1 3 3 8 6 9
... higher than ... 0 1 2 2 2 4

Actual sample is ...
power analysis ...same asorequalto... 0 2 1 1 2 2
sample size.

... lower than ... 0 0 0 2 0 0

Unstated sample size from power analysis 1 0 0 3 2 3
L: 1 L: 1 L: 2 L: 2 L: 2 L: 4
Settings O: 0 O: 2 O: 0 O: 3 O: 0 O: 0
C: 0 C: 0 C: 1 C: 2 C: 3 C: 5
N: 0 N: 0 N: 0 N: 1 N: 1 N: 0
L:Lab, O: Online, C: Crowdsourcing, N:Non-human samples

Table E.1: Literature review summary.

Table E.1 shows the proportion of papers with an a priori power anal-
ysis. It is evident that power analysis seems to be unimportant at CHI
for planning sample sizes. We believe that power analysis is complex
due to the dynamic relationship between input and output param-
eters. Wang et al. [2021] created a detail task analysis outlining the
challenges of performing such analysis.
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Appendix F

Data Analysis and Result
Adjustments

First, we explain the calculation of the adjusted p-value with stage-
wise ordering. Second, we describe the conceptual model and avail-
able packages for mean estimate adjustment from which effect sizes
such as Cohen’s d can be calculated. Lastly, we outline the confidence
intervals adjustment.

F1 Calculation of adjusted p-values with stage-
wise ordering

In fixed-sample design, a p-value is defined as the probability of ob-
taining an effect that is at least as extreme as the observed effect as-
suming that the null-hypothesis is true [Proschan et al., 2006]. This
definition needs to be adopted to fit the monitored data collection dur-
ing SED: The adjusted p-value is defined as the probability of obtain-
ing an effect that is at least as extreme as the observed effect assuming
that the null-hypothesis is true and the previous analyses were not
significant. Several mathematical models can be used for this adjust-
ment, however, stagewise ordering is the most common one. Stagewise
ordering only relies on the preceding interim a boundaries and the ob-
served result while others also take into account the future interim o
boundaries [Proschan et al., 2006, Wittes, 2012]. The adjusted p-value
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p can be calculate as follows:
j—1

p=Pr({J (Z(t) = ) U Z(t)) = 2)), (E1)
=1

where Z(7) is the resulting interim z-score at information time 7 based

on the conditional distribution; ci,...,c;—; are the planning bound-
aries at analyses 1,...,j — 1; and z; is the observed z-score at the jth
analysis.

For example, let’s consider the study planned according to Table 4.4,
and assume that the researcher stopped the data collection at the third
analysis, i.e. 7 = 0.75, with a z-score of 2.7 (p = 0.0069). The calculation
for the adjusted p-value using stagewise ordering is:

p = Pr(Z(0.25) > 4.37UZ(0.5) > 2.81UZ(0.75) > 2.7) = 0.0119 (E2)

E2 Calculation of mean differences based on drift
0

A sequential experimental design is considered a Brownian motion
process W (t) with linear drift . Brownian motion is a continuous-
time stochastic process that can be used to model the study’s outcome.
Furthermore, increments of the process are independent from each
other, which resembles recruitment of participants, i.e. participant 1
performs independently of participants 2. The expected value of a
Brownian motion process is 0, i.e. E[W ()] = 0. The drift § describes
the rate at which this expected value E[IW(t)] changes over time. In
sequential experimental design, the drift § can be understood as the z-
score that is expected at the end of the study. In order to calculate the
mean difference and its confidence interval, we start by estimating the
drift parameter 6. The expected value for the observed drift parameter
E(0)'can be expressed as:

M
E(6) :;E{VV;T)‘T:Q}PT(T:Q), (E3)
where M is the number of analyses, and @ is the maximum likeli-

hood estimate of 6 given that T' = ¢;. The equations for the drift nu-
merical calculation would exceed the scope of this paper, but can be

'To make the formulas simpler to parse, we do not differentiate between the true
drift 0, and the observed or estimated drift 6.
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found with examples in [Li and DeMets, 1999, Proschan et al., 2006,
Jennison, 1999]. Luckily, there are R packages such as gsDesign [An-
derson, 2020] and GroupSeq [Pahl, 2018] that can perform this com-
putation effortlessly, e.g., findDrift (...).

Once the drift parameter is known, the mean difference Mg; ;s can be
calculated as follows:
202
Md’tff — 0 X W, (F4)
where 0 is the drift parameter, o is the pooled standard deviation (us-
ing the planned final sample size even if the study was stopped early),
and N is the planned final sample size.
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Appendix G

Simulations

Nreduced
9 : Overall mean: 0.24 SD:0.08 by SED
&5 | R
S % | o il 1, 25| [ 27 5595
. O 3 R T NS T DL N
g s .. 1
3 Even with fixed-sam- §§§§§§§:3 i 032
. ] CRTE]
" 331 ple design, only 48 _,s;s&;xg;xﬁsmm Siabh. .o 33 _ 306 2142
= additional universes 0.23'
é‘? would have been R :
g 40 statistically significant x%%h_ﬁl .. . 40 - 155 0
g 0.19 !
Q
% 116 universes are not statistically significant in
ap s ——Oﬁu\/ both SED and fixed-sample design. n.s. 118 166 0
L2l 0.12
0 0.1 0.2 0.3 0.4 0.5 0 100 200 300 400 7737
Effect Size Cohen’s d Universe Count 19.34%

Table G.1: The distribution of Cohen’s d from a simulation of 1,000 universes based on the
demonstration study. The results are juxtaposed along the vertical axis according to whether
and when the results are statistically significant with SED plan. In the n.s. row, 48 universes
would have yielded a statistically significant result with the fixed-sample design used. Right:
frequency and saving summary.

We ran two simulations to assess the benefits of SED in the long run
for lab studies and online crowdsourcing studies. The reproducible R
code used in this section is provided in Supplementary Material S2.

The first simulation represents lab studies. We use the same setup as
in section G and simulate running the same study in 1,000 different
universes. Table G.1 presents the effect sizes in a quantile dot plot
[Kay et al., 2016a, Kay, 2020]. With SED, 83.4% of the universes found
that the effect was statistically significant. With a fixed-sample design
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instead of SED, only an additional 4.8% are statistically significant, all
of which yield an effect size lower than 0.2— Cohen’s “small” criterion
[Cohen, 1988]. Moreover, regardless of design method, the results are
not statistically significant in 11.8% of the cases. On the other hand,
SED reduced the number of participants by 19% (7,737 participants) in
total across all universes, demonstrating the potential of SED to save
significant resources.

SED decision rules: Stop when either:

0

Hypotheses: There are four null hypothe- SESOI E ll)\lr;}cgl]t;ced
sis on the same dependent variable. £0.06 | v
N nominal 3

Interim Analysis 1 1200 .0015 =
Interim Analysis 2 1800 0147 & 9351 I 245 0
Final Analysis 2351 0338 ¢

g E

=

g

2

w

« all p-values < nominal o — statistically significant

« all Cohen’s d < SESOI

— futility

0 2000 4000 6000 9,124,413
Universe Count 38.02%

Table G.2: A simulation of a crowdsourcing study [Hofman et al., 2020] in 1,000 universes
with the same SED plan shown on the left. The right chart shows that most studies could
have stopped early and only a small number of universes did not show significant results.

The second simulation represents crowdsourcing studies. In these
studies, increasing the number of participants is relatively easier than
in lab studies. However, some data points need to be removed be-
cause participants failed attention checks, generated extreme outliers,
or faced technical problems [Komarov et al., 2013]. Therefore, crowd-
sourcing studies tend to recruit more participants than required by a
priori power analysis—see Appendix E for statistics on this practice in
CHI papers.

We ran a simulation using the data from [Hofman et al., 2020] with all
of their four hypotheses. To stop early, all hypotheses need to have
their p-values below the nominal «. The SED plan and the results are
shown in Table G.2. Assuming the same order of participants as the
original data, this study could have stopped after 1,200 participants.
Since the original experiment had 2,351 participants, SED would have
reduced the cost by (2,351 — 1,200) x 0.75 USD = 863.25 USD. There-
fore, even when the cost per participant is low, SED can be substan-
tially economical.
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